Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfself GIF version

Theorem nninfself 13548
Description: Domain and range of the selection function for . (Contributed by Jim Kingdon, 6-Aug-2022.)
Hypothesis
Ref Expression
nninfsel.e 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
Assertion
Ref Expression
nninfself 𝐸:(2o𝑚)⟶ℕ
Distinct variable groups:   𝑖,𝑘,𝑛   𝑘,𝑞,𝑛
Allowed substitution hints:   𝐸(𝑖,𝑘,𝑛,𝑞)

Proof of Theorem nninfself
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfsel.e . 2 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
2 nninfsellemcl 13546 . . . . 5 ((𝑞 ∈ (2o𝑚) ∧ 𝑛 ∈ ω) → if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o)
3 eqid 2157 . . . . 5 (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
42, 3fmptd 5618 . . . 4 (𝑞 ∈ (2o𝑚) → (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)):ω⟶2o)
5 2onn 6461 . . . . . 6 2o ∈ ω
65a1i 9 . . . . 5 (𝑞 ∈ (2o𝑚) → 2o ∈ ω)
7 omex 4550 . . . . . 6 ω ∈ V
87a1i 9 . . . . 5 (𝑞 ∈ (2o𝑚) → ω ∈ V)
96, 8elmapd 6600 . . . 4 (𝑞 ∈ (2o𝑚) → ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) ∈ (2o𝑚 ω) ↔ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)):ω⟶2o))
104, 9mpbird 166 . . 3 (𝑞 ∈ (2o𝑚) → (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) ∈ (2o𝑚 ω))
11 nninfsellemsuc 13547 . . . . 5 ((𝑞 ∈ (2o𝑚) ∧ 𝑗 ∈ ω) → if(∀𝑘 ∈ suc suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ⊆ if(∀𝑘 ∈ suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
12 peano2 4552 . . . . . 6 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
13 nninfsellemcl 13546 . . . . . . 7 ((𝑞 ∈ (2o𝑚) ∧ suc 𝑗 ∈ ω) → if(∀𝑘 ∈ suc suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o)
1412, 13sylan2 284 . . . . . 6 ((𝑞 ∈ (2o𝑚) ∧ 𝑗 ∈ ω) → if(∀𝑘 ∈ suc suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o)
15 suceq 4361 . . . . . . . . 9 (𝑛 = suc 𝑗 → suc 𝑛 = suc suc 𝑗)
1615raleqdv 2658 . . . . . . . 8 (𝑛 = suc 𝑗 → (∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
1716ifbid 3526 . . . . . . 7 (𝑛 = suc 𝑗 → if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑘 ∈ suc suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
1817, 3fvmptg 5541 . . . . . 6 ((suc 𝑗 ∈ ω ∧ if(∀𝑘 ∈ suc suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o) → ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘suc 𝑗) = if(∀𝑘 ∈ suc suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
1912, 14, 18syl2an2 584 . . . . 5 ((𝑞 ∈ (2o𝑚) ∧ 𝑗 ∈ ω) → ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘suc 𝑗) = if(∀𝑘 ∈ suc suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
20 simpr 109 . . . . . 6 ((𝑞 ∈ (2o𝑚) ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω)
21 nninfsellemcl 13546 . . . . . 6 ((𝑞 ∈ (2o𝑚) ∧ 𝑗 ∈ ω) → if(∀𝑘 ∈ suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o)
22 suceq 4361 . . . . . . . . 9 (𝑛 = 𝑗 → suc 𝑛 = suc 𝑗)
2322raleqdv 2658 . . . . . . . 8 (𝑛 = 𝑗 → (∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
2423ifbid 3526 . . . . . . 7 (𝑛 = 𝑗 → if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑘 ∈ suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
2524, 3fvmptg 5541 . . . . . 6 ((𝑗 ∈ ω ∧ if(∀𝑘 ∈ suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o) → ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘𝑗) = if(∀𝑘 ∈ suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
2620, 21, 25syl2anc 409 . . . . 5 ((𝑞 ∈ (2o𝑚) ∧ 𝑗 ∈ ω) → ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘𝑗) = if(∀𝑘 ∈ suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
2711, 19, 263sstr4d 3173 . . . 4 ((𝑞 ∈ (2o𝑚) ∧ 𝑗 ∈ ω) → ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘suc 𝑗) ⊆ ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘𝑗))
2827ralrimiva 2530 . . 3 (𝑞 ∈ (2o𝑚) → ∀𝑗 ∈ ω ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘suc 𝑗) ⊆ ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘𝑗))
29 fveq1 5464 . . . . . 6 (𝑓 = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) → (𝑓‘suc 𝑗) = ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘suc 𝑗))
30 fveq1 5464 . . . . . 6 (𝑓 = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) → (𝑓𝑗) = ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘𝑗))
3129, 30sseq12d 3159 . . . . 5 (𝑓 = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘suc 𝑗) ⊆ ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘𝑗)))
3231ralbidv 2457 . . . 4 (𝑓 = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘suc 𝑗) ⊆ ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘𝑗)))
33 df-nninf 7054 . . . 4 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
3432, 33elrab2 2871 . . 3 ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) ∈ ℕ ↔ ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘suc 𝑗) ⊆ ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘𝑗)))
3510, 28, 34sylanbrc 414 . 2 (𝑞 ∈ (2o𝑚) → (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) ∈ ℕ)
361, 35fmpti 5616 1 𝐸:(2o𝑚)⟶ℕ
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1335  wcel 2128  wral 2435  Vcvv 2712  wss 3102  c0 3394  ifcif 3505  cmpt 4025  suc csuc 4324  ωcom 4547  wf 5163  cfv 5167  (class class class)co 5818  1oc1o 6350  2oc2o 6351  𝑚 cmap 6586  xnninf 7053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-iord 4325  df-on 4327  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1o 6357  df-2o 6358  df-map 6588  df-nninf 7054
This theorem is referenced by:  nninfsellemeq  13549  nninfsellemeqinf  13551  nninfomnilem  13553
  Copyright terms: Public domain W3C validator