Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfself GIF version

Theorem nninfself 13011
Description: Domain and range of the selection function for . (Contributed by Jim Kingdon, 6-Aug-2022.)
Hypothesis
Ref Expression
nninfsel.e 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
Assertion
Ref Expression
nninfself 𝐸:(2o𝑚)⟶ℕ
Distinct variable groups:   𝑖,𝑘,𝑛   𝑘,𝑞,𝑛
Allowed substitution hints:   𝐸(𝑖,𝑘,𝑛,𝑞)

Proof of Theorem nninfself
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfsel.e . 2 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
2 nninfsellemcl 13009 . . . . 5 ((𝑞 ∈ (2o𝑚) ∧ 𝑛 ∈ ω) → if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o)
3 eqid 2115 . . . . 5 (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
42, 3fmptd 5540 . . . 4 (𝑞 ∈ (2o𝑚) → (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)):ω⟶2o)
5 2onn 6383 . . . . . 6 2o ∈ ω
65a1i 9 . . . . 5 (𝑞 ∈ (2o𝑚) → 2o ∈ ω)
7 omex 4475 . . . . . 6 ω ∈ V
87a1i 9 . . . . 5 (𝑞 ∈ (2o𝑚) → ω ∈ V)
96, 8elmapd 6522 . . . 4 (𝑞 ∈ (2o𝑚) → ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) ∈ (2o𝑚 ω) ↔ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)):ω⟶2o))
104, 9mpbird 166 . . 3 (𝑞 ∈ (2o𝑚) → (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) ∈ (2o𝑚 ω))
11 nninfsellemsuc 13010 . . . . 5 ((𝑞 ∈ (2o𝑚) ∧ 𝑗 ∈ ω) → if(∀𝑘 ∈ suc suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ⊆ if(∀𝑘 ∈ suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
12 peano2 4477 . . . . . 6 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
13 nninfsellemcl 13009 . . . . . . 7 ((𝑞 ∈ (2o𝑚) ∧ suc 𝑗 ∈ ω) → if(∀𝑘 ∈ suc suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o)
1412, 13sylan2 282 . . . . . 6 ((𝑞 ∈ (2o𝑚) ∧ 𝑗 ∈ ω) → if(∀𝑘 ∈ suc suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o)
15 suceq 4292 . . . . . . . . 9 (𝑛 = suc 𝑗 → suc 𝑛 = suc suc 𝑗)
1615raleqdv 2607 . . . . . . . 8 (𝑛 = suc 𝑗 → (∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
1716ifbid 3461 . . . . . . 7 (𝑛 = suc 𝑗 → if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑘 ∈ suc suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
1817, 3fvmptg 5463 . . . . . 6 ((suc 𝑗 ∈ ω ∧ if(∀𝑘 ∈ suc suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o) → ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘suc 𝑗) = if(∀𝑘 ∈ suc suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
1912, 14, 18syl2an2 566 . . . . 5 ((𝑞 ∈ (2o𝑚) ∧ 𝑗 ∈ ω) → ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘suc 𝑗) = if(∀𝑘 ∈ suc suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
20 simpr 109 . . . . . 6 ((𝑞 ∈ (2o𝑚) ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω)
21 nninfsellemcl 13009 . . . . . 6 ((𝑞 ∈ (2o𝑚) ∧ 𝑗 ∈ ω) → if(∀𝑘 ∈ suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o)
22 suceq 4292 . . . . . . . . 9 (𝑛 = 𝑗 → suc 𝑛 = suc 𝑗)
2322raleqdv 2607 . . . . . . . 8 (𝑛 = 𝑗 → (∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
2423ifbid 3461 . . . . . . 7 (𝑛 = 𝑗 → if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑘 ∈ suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
2524, 3fvmptg 5463 . . . . . 6 ((𝑗 ∈ ω ∧ if(∀𝑘 ∈ suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ 2o) → ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘𝑗) = if(∀𝑘 ∈ suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
2620, 21, 25syl2anc 406 . . . . 5 ((𝑞 ∈ (2o𝑚) ∧ 𝑗 ∈ ω) → ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘𝑗) = if(∀𝑘 ∈ suc 𝑗(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
2711, 19, 263sstr4d 3110 . . . 4 ((𝑞 ∈ (2o𝑚) ∧ 𝑗 ∈ ω) → ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘suc 𝑗) ⊆ ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘𝑗))
2827ralrimiva 2480 . . 3 (𝑞 ∈ (2o𝑚) → ∀𝑗 ∈ ω ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘suc 𝑗) ⊆ ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘𝑗))
29 fveq1 5386 . . . . . 6 (𝑓 = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) → (𝑓‘suc 𝑗) = ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘suc 𝑗))
30 fveq1 5386 . . . . . 6 (𝑓 = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) → (𝑓𝑗) = ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘𝑗))
3129, 30sseq12d 3096 . . . . 5 (𝑓 = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘suc 𝑗) ⊆ ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘𝑗)))
3231ralbidv 2412 . . . 4 (𝑓 = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘suc 𝑗) ⊆ ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘𝑗)))
33 df-nninf 6973 . . . 4 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
3432, 33elrab2 2814 . . 3 ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) ∈ ℕ ↔ ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘suc 𝑗) ⊆ ((𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))‘𝑗)))
3510, 28, 34sylanbrc 411 . 2 (𝑞 ∈ (2o𝑚) → (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) ∈ ℕ)
361, 35fmpti 5538 1 𝐸:(2o𝑚)⟶ℕ
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1314  wcel 1463  wral 2391  Vcvv 2658  wss 3039  c0 3331  ifcif 3442  cmpt 3957  suc csuc 4255  ωcom 4472  wf 5087  cfv 5091  (class class class)co 5740  1oc1o 6272  2oc2o 6273  𝑚 cmap 6508  xnninf 6971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-iord 4256  df-on 4258  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1o 6279  df-2o 6280  df-map 6510  df-nninf 6973
This theorem is referenced by:  nninfsellemeq  13012  nninfsellemeqinf  13014  nninfomnilem  13016
  Copyright terms: Public domain W3C validator