Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfoprab2 | GIF version |
Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 30-Jul-2012.) |
Ref | Expression |
---|---|
nfoprab2 | ⊢ Ⅎ𝑦{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-oprab 5857 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} | |
2 | nfe1 1489 | . . . 4 ⊢ Ⅎ𝑦∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) | |
3 | 2 | nfex 1630 | . . 3 ⊢ Ⅎ𝑦∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
4 | 3 | nfab 2317 | . 2 ⊢ Ⅎ𝑦{𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
5 | 1, 4 | nfcxfr 2309 | 1 ⊢ Ⅎ𝑦{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∃wex 1485 {cab 2156 Ⅎwnfc 2299 〈cop 3586 {coprab 5854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-oprab 5857 |
This theorem is referenced by: ssoprab2b 5910 nfmpo2 5921 ovi3 5989 tposoprab 6259 |
Copyright terms: Public domain | W3C validator |