ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfoprab2 GIF version

Theorem nfoprab2 5972
Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 30-Jul-2012.)
Assertion
Ref Expression
nfoprab2 𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}

Proof of Theorem nfoprab2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-oprab 5926 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
2 nfe1 1510 . . . 4 𝑦𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
32nfex 1651 . . 3 𝑦𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
43nfab 2344 . 2 𝑦{𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
51, 4nfcxfr 2336 1 𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1506  {cab 2182  wnfc 2326  cop 3625  {coprab 5923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-oprab 5926
This theorem is referenced by:  ssoprab2b  5979  nfmpo2  5990  ovi3  6060  tposoprab  6338
  Copyright terms: Public domain W3C validator