ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabrexex2 GIF version

Theorem oprabrexex2 6187
Description: Existence of an existentially restricted operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.)
Hypotheses
Ref Expression
oprabrexex2.1 𝐴 ∈ V
oprabrexex2.2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ∈ V
Assertion
Ref Expression
oprabrexex2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑤𝐴 𝜑} ∈ V
Distinct variable group:   𝑥,𝐴,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem oprabrexex2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 df-oprab 5926 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑤𝐴 𝜑} = {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑)}
2 rexcom4 2786 . . . . 5 (∃𝑤𝐴𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑤𝐴𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
3 rexcom4 2786 . . . . . . 7 (∃𝑤𝐴𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑦𝑤𝐴𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
4 rexcom4 2786 . . . . . . . . 9 (∃𝑤𝐴𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧𝑤𝐴 (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
5 r19.42v 2654 . . . . . . . . . 10 (∃𝑤𝐴 (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑))
65exbii 1619 . . . . . . . . 9 (∃𝑧𝑤𝐴 (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑))
74, 6bitri 184 . . . . . . . 8 (∃𝑤𝐴𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑))
87exbii 1619 . . . . . . 7 (∃𝑦𝑤𝐴𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑))
93, 8bitri 184 . . . . . 6 (∃𝑤𝐴𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑))
109exbii 1619 . . . . 5 (∃𝑥𝑤𝐴𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑))
112, 10bitr2i 185 . . . 4 (∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑) ↔ ∃𝑤𝐴𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
1211abbii 2312 . . 3 {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑)} = {𝑣 ∣ ∃𝑤𝐴𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
131, 12eqtri 2217 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑤𝐴 𝜑} = {𝑣 ∣ ∃𝑤𝐴𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
14 oprabrexex2.1 . . 3 𝐴 ∈ V
15 df-oprab 5926 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
16 oprabrexex2.2 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ∈ V
1715, 16eqeltrri 2270 . . 3 {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} ∈ V
1814, 17abrexex2 6181 . 2 {𝑣 ∣ ∃𝑤𝐴𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} ∈ V
1913, 18eqeltri 2269 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑤𝐴 𝜑} ∈ V
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1506  wcel 2167  {cab 2182  wrex 2476  Vcvv 2763  cop 3625  {coprab 5923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-oprab 5926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator