ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabrexex2 GIF version

Theorem oprabrexex2 5883
Description: Existence of an existentially restricted operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.)
Hypotheses
Ref Expression
oprabrexex2.1 𝐴 ∈ V
oprabrexex2.2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ∈ V
Assertion
Ref Expression
oprabrexex2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑤𝐴 𝜑} ∈ V
Distinct variable group:   𝑥,𝐴,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem oprabrexex2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 df-oprab 5638 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑤𝐴 𝜑} = {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑)}
2 rexcom4 2642 . . . . 5 (∃𝑤𝐴𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑤𝐴𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
3 rexcom4 2642 . . . . . . 7 (∃𝑤𝐴𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑦𝑤𝐴𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
4 rexcom4 2642 . . . . . . . . 9 (∃𝑤𝐴𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧𝑤𝐴 (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
5 r19.42v 2524 . . . . . . . . . 10 (∃𝑤𝐴 (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑))
65exbii 1541 . . . . . . . . 9 (∃𝑧𝑤𝐴 (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑))
74, 6bitri 182 . . . . . . . 8 (∃𝑤𝐴𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑))
87exbii 1541 . . . . . . 7 (∃𝑦𝑤𝐴𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑))
93, 8bitri 182 . . . . . 6 (∃𝑤𝐴𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑))
109exbii 1541 . . . . 5 (∃𝑥𝑤𝐴𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑))
112, 10bitr2i 183 . . . 4 (∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑) ↔ ∃𝑤𝐴𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
1211abbii 2203 . . 3 {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ∃𝑤𝐴 𝜑)} = {𝑣 ∣ ∃𝑤𝐴𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
131, 12eqtri 2108 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑤𝐴 𝜑} = {𝑣 ∣ ∃𝑤𝐴𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
14 oprabrexex2.1 . . 3 𝐴 ∈ V
15 df-oprab 5638 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
16 oprabrexex2.2 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ∈ V
1715, 16eqeltrri 2161 . . 3 {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} ∈ V
1814, 17abrexex2 5877 . 2 {𝑣 ∣ ∃𝑤𝐴𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} ∈ V
1913, 18eqeltri 2160 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑤𝐴 𝜑} ∈ V
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1289  wex 1426  wcel 1438  {cab 2074  wrex 2360  Vcvv 2619  cop 3444  {coprab 5635
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-oprab 5638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator