ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ov GIF version

Definition df-ov 5928
Description: Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. For example, if class 𝐹 is the operation + and arguments 𝐴 and 𝐵 are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets); see ovprc1 5962 and ovprc2 5963. On the other hand, we often find uses for this definition when 𝐹 is a proper class. 𝐹 is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5929. (Contributed by NM, 28-Feb-1995.)
Assertion
Ref Expression
df-ov (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)

Detailed syntax breakdown of Definition df-ov
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cF . . 3 class 𝐹
41, 2, 3co 5925 . 2 class (𝐴𝐹𝐵)
51, 2cop 3626 . . 3 class 𝐴, 𝐵
65, 3cfv 5259 . 2 class (𝐹‘⟨𝐴, 𝐵⟩)
74, 6wceq 1364 1 wff (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
Colors of variables: wff set class
This definition is referenced by:  oveq  5931  oveq1  5932  oveq2  5933  nfovd  5954  fnovex  5958  ovexg  5959  ovssunirng  5960  ovprc  5961  fnotovb  5969  ffnov  6030  eqfnov  6033  fnovim  6035  ovid  6043  ovidig  6044  ov  6046  ovigg  6047  fvmpopr2d  6063  ov6g  6065  ovg  6066  ovres  6067  fovcdm  6070  fnrnov  6073  foov  6074  fnovrn  6075  funimassov  6077  ovelimab  6078  ovconst2  6079  elmpocl  6122  oprssdmm  6238  mpofvex  6272  oprab2co  6285  algrflem  6296  algrflemg  6297  mpoxopn0yelv  6306  ovtposg  6326  addpiord  7400  mulpiord  7401  addvalex  7928  cnref1o  9742  ioof  10063  frecuzrdgrrn  10517  frec2uzrdg  10518  frecuzrdgrcl  10519  frecuzrdgsuc  10523  frecuzrdgrclt  10524  frecuzrdgg  10525  frecuzrdgsuctlem  10532  seq3val  10569  seqvalcd  10570  cnrecnv  11092  eucalgval  12247  eucalginv  12249  eucalglt  12250  eucalg  12252  sqpweven  12368  2sqpwodd  12369  isstructim  12717  isstructr  12718  relelbasov  12765  imasaddvallemg  13017  xpsff1o  13051  mgm1  13072  sgrp1  13113  mnd1  13157  mnd1id  13158  grp1  13308  srgfcl  13605  ring1  13691  txdis1cn  14598  lmcn2  14600  cnmpt12f  14606  cnmpt21  14611  cnmpt2t  14613  cnmpt22  14614  psmetxrge0  14652  xmeterval  14755  comet  14819  txmetcnp  14838  qtopbasss  14841  cnmetdval  14849  remetdval  14867  tgqioo  14875  mpomulcn  14886  mpodvdsmulf1o  15310  fsumdvdsmul  15311
  Copyright terms: Public domain W3C validator