![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-ov | GIF version |
Description: Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. For example, if class 𝐹 is the operation + and arguments 𝐴 and 𝐵 are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets); see ovprc1 5955 and ovprc2 5956. On the other hand, we often find uses for this definition when 𝐹 is a proper class. 𝐹 is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5923. (Contributed by NM, 28-Feb-1995.) |
Ref | Expression |
---|---|
df-ov | ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | co 5919 | . 2 class (𝐴𝐹𝐵) |
5 | 1, 2 | cop 3622 | . . 3 class 〈𝐴, 𝐵〉 |
6 | 5, 3 | cfv 5255 | . 2 class (𝐹‘〈𝐴, 𝐵〉) |
7 | 4, 6 | wceq 1364 | 1 wff (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) |
Colors of variables: wff set class |
This definition is referenced by: oveq 5925 oveq1 5926 oveq2 5927 nfovd 5948 fnovex 5952 ovexg 5953 ovprc 5954 fnotovb 5962 ffnov 6023 eqfnov 6026 fnovim 6028 ovid 6036 ovidig 6037 ov 6039 ovigg 6040 fvmpopr2d 6056 ov6g 6058 ovg 6059 ovres 6060 fovcdm 6063 fnrnov 6066 foov 6067 fnovrn 6068 funimassov 6070 ovelimab 6071 ovconst2 6072 elmpocl 6115 oprssdmm 6226 mpofvex 6260 oprab2co 6273 algrflem 6284 algrflemg 6285 mpoxopn0yelv 6294 ovtposg 6314 addpiord 7378 mulpiord 7379 addvalex 7906 cnref1o 9719 ioof 10040 frecuzrdgrrn 10482 frec2uzrdg 10483 frecuzrdgrcl 10484 frecuzrdgsuc 10488 frecuzrdgrclt 10489 frecuzrdgg 10490 frecuzrdgsuctlem 10497 seq3val 10534 seqvalcd 10535 cnrecnv 11057 eucalgval 12195 eucalginv 12197 eucalglt 12198 eucalg 12200 sqpweven 12316 2sqpwodd 12317 isstructim 12635 isstructr 12636 relelbasov 12683 imasaddvallemg 12901 xpsff1o 12935 mgm1 12956 sgrp1 12997 mnd1 13030 mnd1id 13031 grp1 13181 srgfcl 13472 ring1 13558 txdis1cn 14457 lmcn2 14459 cnmpt12f 14465 cnmpt21 14470 cnmpt2t 14472 cnmpt22 14473 psmetxrge0 14511 xmeterval 14614 comet 14678 txmetcnp 14697 qtopbasss 14700 cnmetdval 14708 remetdval 14726 tgqioo 14734 mpomulcn 14745 |
Copyright terms: Public domain | W3C validator |