ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ov GIF version

Definition df-ov 5925
Description: Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. For example, if class 𝐹 is the operation + and arguments 𝐴 and 𝐵 are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets); see ovprc1 5958 and ovprc2 5959. On the other hand, we often find uses for this definition when 𝐹 is a proper class. 𝐹 is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5926. (Contributed by NM, 28-Feb-1995.)
Assertion
Ref Expression
df-ov (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)

Detailed syntax breakdown of Definition df-ov
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cF . . 3 class 𝐹
41, 2, 3co 5922 . 2 class (𝐴𝐹𝐵)
51, 2cop 3625 . . 3 class 𝐴, 𝐵
65, 3cfv 5258 . 2 class (𝐹‘⟨𝐴, 𝐵⟩)
74, 6wceq 1364 1 wff (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
Colors of variables: wff set class
This definition is referenced by:  oveq  5928  oveq1  5929  oveq2  5930  nfovd  5951  fnovex  5955  ovexg  5956  ovprc  5957  fnotovb  5965  ffnov  6026  eqfnov  6029  fnovim  6031  ovid  6039  ovidig  6040  ov  6042  ovigg  6043  fvmpopr2d  6059  ov6g  6061  ovg  6062  ovres  6063  fovcdm  6066  fnrnov  6069  foov  6070  fnovrn  6071  funimassov  6073  ovelimab  6074  ovconst2  6075  elmpocl  6118  oprssdmm  6229  mpofvex  6263  oprab2co  6276  algrflem  6287  algrflemg  6288  mpoxopn0yelv  6297  ovtposg  6317  addpiord  7383  mulpiord  7384  addvalex  7911  cnref1o  9725  ioof  10046  frecuzrdgrrn  10500  frec2uzrdg  10501  frecuzrdgrcl  10502  frecuzrdgsuc  10506  frecuzrdgrclt  10507  frecuzrdgg  10508  frecuzrdgsuctlem  10515  seq3val  10552  seqvalcd  10553  cnrecnv  11075  eucalgval  12222  eucalginv  12224  eucalglt  12225  eucalg  12227  sqpweven  12343  2sqpwodd  12344  isstructim  12692  isstructr  12693  relelbasov  12740  imasaddvallemg  12958  xpsff1o  12992  mgm1  13013  sgrp1  13054  mnd1  13087  mnd1id  13088  grp1  13238  srgfcl  13529  ring1  13615  txdis1cn  14514  lmcn2  14516  cnmpt12f  14522  cnmpt21  14527  cnmpt2t  14529  cnmpt22  14530  psmetxrge0  14568  xmeterval  14671  comet  14735  txmetcnp  14754  qtopbasss  14757  cnmetdval  14765  remetdval  14783  tgqioo  14791  mpomulcn  14802  mpodvdsmulf1o  15226  fsumdvdsmul  15227
  Copyright terms: Public domain W3C validator