Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-ov | GIF version |
Description: Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. For example, if class 𝐹 is the operation + and arguments 𝐴 and 𝐵 are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets); see ovprc1 5889 and ovprc2 5890. On the other hand, we often find uses for this definition when 𝐹 is a proper class. 𝐹 is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5857. (Contributed by NM, 28-Feb-1995.) |
Ref | Expression |
---|---|
df-ov | ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | co 5853 | . 2 class (𝐴𝐹𝐵) |
5 | 1, 2 | cop 3586 | . . 3 class 〈𝐴, 𝐵〉 |
6 | 5, 3 | cfv 5198 | . 2 class (𝐹‘〈𝐴, 𝐵〉) |
7 | 4, 6 | wceq 1348 | 1 wff (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) |
Colors of variables: wff set class |
This definition is referenced by: oveq 5859 oveq1 5860 oveq2 5861 nfovd 5882 fnovex 5886 ovexg 5887 ovprc 5888 fnotovb 5896 ffnov 5957 eqfnov 5959 fnovim 5961 ovid 5969 ovidig 5970 ov 5972 ovigg 5973 ov6g 5990 ovg 5991 ovres 5992 fovrn 5995 fnrnov 5998 foov 5999 fnovrn 6000 funimassov 6002 ovelimab 6003 ovconst2 6004 elmpocl 6047 oprssdmm 6150 mpofvex 6182 oprab2co 6197 algrflem 6208 algrflemg 6209 mpoxopn0yelv 6218 ovtposg 6238 addpiord 7278 mulpiord 7279 addvalex 7806 cnref1o 9609 ioof 9928 frecuzrdgrrn 10364 frec2uzrdg 10365 frecuzrdgrcl 10366 frecuzrdgsuc 10370 frecuzrdgrclt 10371 frecuzrdgg 10372 frecuzrdgsuctlem 10379 seq3val 10414 seqvalcd 10415 cnrecnv 10874 eucalgval 12008 eucalginv 12010 eucalglt 12011 eucalg 12013 sqpweven 12129 2sqpwodd 12130 isstructim 12430 isstructr 12431 mgm1 12624 sgrp1 12651 mnd1 12679 mnd1id 12680 txdis1cn 13072 lmcn2 13074 cnmpt12f 13080 cnmpt21 13085 cnmpt2t 13087 cnmpt22 13088 psmetxrge0 13126 xmeterval 13229 comet 13293 txmetcnp 13312 qtopbasss 13315 cnmetdval 13323 remetdval 13333 tgqioo 13341 |
Copyright terms: Public domain | W3C validator |