ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ov GIF version

Definition df-ov 5977
Description: Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. For example, if class 𝐹 is the operation + and arguments 𝐴 and 𝐵 are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets); see ovprc1 6011 and ovprc2 6012. On the other hand, we often find uses for this definition when 𝐹 is a proper class. 𝐹 is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5978. (Contributed by NM, 28-Feb-1995.)
Assertion
Ref Expression
df-ov (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)

Detailed syntax breakdown of Definition df-ov
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cF . . 3 class 𝐹
41, 2, 3co 5974 . 2 class (𝐴𝐹𝐵)
51, 2cop 3649 . . 3 class 𝐴, 𝐵
65, 3cfv 5294 . 2 class (𝐹‘⟨𝐴, 𝐵⟩)
74, 6wceq 1375 1 wff (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
Colors of variables: wff set class
This definition is referenced by:  oveq  5980  oveq1  5981  oveq2  5982  nfovd  6003  fnovex  6007  ovexg  6008  ovssunirng  6009  ovprc  6010  fnotovb  6018  ffnov  6079  eqfnov  6082  fnovim  6084  ovid  6092  ovidig  6093  ov  6095  ovigg  6096  fvmpopr2d  6112  ov6g  6114  ovg  6115  ovres  6116  fovcdm  6119  fnrnov  6122  foov  6123  fnovrn  6124  funimassov  6126  ovelimab  6127  ovconst2  6128  elmpocl  6171  oprssdmm  6287  mpofvex  6321  oprab2co  6334  algrflem  6345  algrflemg  6346  mpoxopn0yelv  6355  ovtposg  6375  addpiord  7471  mulpiord  7472  addvalex  7999  cnref1o  9814  ioof  10135  frecuzrdgrrn  10597  frec2uzrdg  10598  frecuzrdgrcl  10599  frecuzrdgsuc  10603  frecuzrdgrclt  10604  frecuzrdgg  10605  frecuzrdgsuctlem  10612  seq3val  10649  seqvalcd  10650  pfxclz  11177  cnrecnv  11387  eucalgval  12542  eucalginv  12544  eucalglt  12545  eucalg  12547  sqpweven  12663  2sqpwodd  12664  isstructim  13012  isstructr  13013  relelbasov  13061  imasaddvallemg  13314  xpsff1o  13348  mgm1  13369  sgrp1  13410  mnd1  13454  mnd1id  13455  grp1  13605  srgfcl  13902  ring1  13988  txdis1cn  14917  lmcn2  14919  cnmpt12f  14925  cnmpt21  14930  cnmpt2t  14932  cnmpt22  14933  psmetxrge0  14971  xmeterval  15074  comet  15138  txmetcnp  15157  qtopbasss  15160  cnmetdval  15168  remetdval  15186  tgqioo  15194  mpomulcn  15205  mpodvdsmulf1o  15629  fsumdvdsmul  15630  opvtxov  15789  opiedgov  15792  edgov  15828
  Copyright terms: Public domain W3C validator