ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ov GIF version

Definition df-ov 5928
Description: Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. For example, if class 𝐹 is the operation + and arguments 𝐴 and 𝐵 are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets); see ovprc1 5962 and ovprc2 5963. On the other hand, we often find uses for this definition when 𝐹 is a proper class. 𝐹 is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5929. (Contributed by NM, 28-Feb-1995.)
Assertion
Ref Expression
df-ov (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)

Detailed syntax breakdown of Definition df-ov
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cF . . 3 class 𝐹
41, 2, 3co 5925 . 2 class (𝐴𝐹𝐵)
51, 2cop 3626 . . 3 class 𝐴, 𝐵
65, 3cfv 5259 . 2 class (𝐹‘⟨𝐴, 𝐵⟩)
74, 6wceq 1364 1 wff (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
Colors of variables: wff set class
This definition is referenced by:  oveq  5931  oveq1  5932  oveq2  5933  nfovd  5954  fnovex  5958  ovexg  5959  ovssunirng  5960  ovprc  5961  fnotovb  5969  ffnov  6030  eqfnov  6033  fnovim  6035  ovid  6043  ovidig  6044  ov  6046  ovigg  6047  fvmpopr2d  6063  ov6g  6065  ovg  6066  ovres  6067  fovcdm  6070  fnrnov  6073  foov  6074  fnovrn  6075  funimassov  6077  ovelimab  6078  ovconst2  6079  elmpocl  6122  oprssdmm  6238  mpofvex  6272  oprab2co  6285  algrflem  6296  algrflemg  6297  mpoxopn0yelv  6306  ovtposg  6326  addpiord  7402  mulpiord  7403  addvalex  7930  cnref1o  9744  ioof  10065  frecuzrdgrrn  10519  frec2uzrdg  10520  frecuzrdgrcl  10521  frecuzrdgsuc  10525  frecuzrdgrclt  10526  frecuzrdgg  10527  frecuzrdgsuctlem  10534  seq3val  10571  seqvalcd  10572  cnrecnv  11094  eucalgval  12249  eucalginv  12251  eucalglt  12252  eucalg  12254  sqpweven  12370  2sqpwodd  12371  isstructim  12719  isstructr  12720  relelbasov  12767  imasaddvallemg  13019  xpsff1o  13053  mgm1  13074  sgrp1  13115  mnd1  13159  mnd1id  13160  grp1  13310  srgfcl  13607  ring1  13693  txdis1cn  14600  lmcn2  14602  cnmpt12f  14608  cnmpt21  14613  cnmpt2t  14615  cnmpt22  14616  psmetxrge0  14654  xmeterval  14757  comet  14821  txmetcnp  14840  qtopbasss  14843  cnmetdval  14851  remetdval  14869  tgqioo  14877  mpomulcn  14888  mpodvdsmulf1o  15312  fsumdvdsmul  15313
  Copyright terms: Public domain W3C validator