ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ov GIF version

Definition df-ov 5926
Description: Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. For example, if class 𝐹 is the operation + and arguments 𝐴 and 𝐵 are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets); see ovprc1 5960 and ovprc2 5961. On the other hand, we often find uses for this definition when 𝐹 is a proper class. 𝐹 is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5927. (Contributed by NM, 28-Feb-1995.)
Assertion
Ref Expression
df-ov (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)

Detailed syntax breakdown of Definition df-ov
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cF . . 3 class 𝐹
41, 2, 3co 5923 . 2 class (𝐴𝐹𝐵)
51, 2cop 3626 . . 3 class 𝐴, 𝐵
65, 3cfv 5259 . 2 class (𝐹‘⟨𝐴, 𝐵⟩)
74, 6wceq 1364 1 wff (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
Colors of variables: wff set class
This definition is referenced by:  oveq  5929  oveq1  5930  oveq2  5931  nfovd  5952  fnovex  5956  ovexg  5957  ovssunirng  5958  ovprc  5959  fnotovb  5967  ffnov  6028  eqfnov  6031  fnovim  6033  ovid  6041  ovidig  6042  ov  6044  ovigg  6045  fvmpopr2d  6061  ov6g  6063  ovg  6064  ovres  6065  fovcdm  6068  fnrnov  6071  foov  6072  fnovrn  6073  funimassov  6075  ovelimab  6076  ovconst2  6077  elmpocl  6120  oprssdmm  6231  mpofvex  6265  oprab2co  6278  algrflem  6289  algrflemg  6290  mpoxopn0yelv  6299  ovtposg  6319  addpiord  7386  mulpiord  7387  addvalex  7914  cnref1o  9728  ioof  10049  frecuzrdgrrn  10503  frec2uzrdg  10504  frecuzrdgrcl  10505  frecuzrdgsuc  10509  frecuzrdgrclt  10510  frecuzrdgg  10511  frecuzrdgsuctlem  10518  seq3val  10555  seqvalcd  10556  cnrecnv  11078  eucalgval  12233  eucalginv  12235  eucalglt  12236  eucalg  12238  sqpweven  12354  2sqpwodd  12355  isstructim  12703  isstructr  12704  relelbasov  12751  imasaddvallemg  12984  xpsff1o  13018  mgm1  13039  sgrp1  13080  mnd1  13113  mnd1id  13114  grp1  13264  srgfcl  13555  ring1  13641  txdis1cn  14540  lmcn2  14542  cnmpt12f  14548  cnmpt21  14553  cnmpt2t  14555  cnmpt22  14556  psmetxrge0  14594  xmeterval  14697  comet  14761  txmetcnp  14780  qtopbasss  14783  cnmetdval  14791  remetdval  14809  tgqioo  14817  mpomulcn  14828  mpodvdsmulf1o  15252  fsumdvdsmul  15253
  Copyright terms: Public domain W3C validator