![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-ov | GIF version |
Description: Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. For example, if class 𝐹 is the operation + and arguments 𝐴 and 𝐵 are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets); see ovprc1 5911 and ovprc2 5912. On the other hand, we often find uses for this definition when 𝐹 is a proper class. 𝐹 is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5879. (Contributed by NM, 28-Feb-1995.) |
Ref | Expression |
---|---|
df-ov | ⊢ (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | co 5875 | . 2 class (𝐴𝐹𝐵) |
5 | 1, 2 | cop 3596 | . . 3 class ⟨𝐴, 𝐵⟩ |
6 | 5, 3 | cfv 5217 | . 2 class (𝐹‘⟨𝐴, 𝐵⟩) |
7 | 4, 6 | wceq 1353 | 1 wff (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩) |
Colors of variables: wff set class |
This definition is referenced by: oveq 5881 oveq1 5882 oveq2 5883 nfovd 5904 fnovex 5908 ovexg 5909 ovprc 5910 fnotovb 5918 ffnov 5979 eqfnov 5981 fnovim 5983 ovid 5991 ovidig 5992 ov 5994 ovigg 5995 ov6g 6012 ovg 6013 ovres 6014 fovcdm 6017 fnrnov 6020 foov 6021 fnovrn 6022 funimassov 6024 ovelimab 6025 ovconst2 6026 elmpocl 6069 oprssdmm 6172 mpofvex 6204 oprab2co 6219 algrflem 6230 algrflemg 6231 mpoxopn0yelv 6240 ovtposg 6260 addpiord 7315 mulpiord 7316 addvalex 7843 cnref1o 9650 ioof 9971 frecuzrdgrrn 10408 frec2uzrdg 10409 frecuzrdgrcl 10410 frecuzrdgsuc 10414 frecuzrdgrclt 10415 frecuzrdgg 10416 frecuzrdgsuctlem 10423 seq3val 10458 seqvalcd 10459 cnrecnv 10919 eucalgval 12054 eucalginv 12056 eucalglt 12057 eucalg 12059 sqpweven 12175 2sqpwodd 12176 isstructim 12476 isstructr 12477 imasaddvallemg 12736 xpsff1o 12768 mgm1 12789 sgrp1 12816 mnd1 12847 mnd1id 12848 grp1 12976 srgfcl 13156 ring1 13236 txdis1cn 13781 lmcn2 13783 cnmpt12f 13789 cnmpt21 13794 cnmpt2t 13796 cnmpt22 13797 psmetxrge0 13835 xmeterval 13938 comet 14002 txmetcnp 14021 qtopbasss 14024 cnmetdval 14032 remetdval 14042 tgqioo 14050 |
Copyright terms: Public domain | W3C validator |