ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ov GIF version

Definition df-ov 5954
Description: Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. For example, if class 𝐹 is the operation + and arguments 𝐴 and 𝐵 are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets); see ovprc1 5988 and ovprc2 5989. On the other hand, we often find uses for this definition when 𝐹 is a proper class. 𝐹 is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5955. (Contributed by NM, 28-Feb-1995.)
Assertion
Ref Expression
df-ov (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)

Detailed syntax breakdown of Definition df-ov
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cF . . 3 class 𝐹
41, 2, 3co 5951 . 2 class (𝐴𝐹𝐵)
51, 2cop 3637 . . 3 class 𝐴, 𝐵
65, 3cfv 5276 . 2 class (𝐹‘⟨𝐴, 𝐵⟩)
74, 6wceq 1373 1 wff (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
Colors of variables: wff set class
This definition is referenced by:  oveq  5957  oveq1  5958  oveq2  5959  nfovd  5980  fnovex  5984  ovexg  5985  ovssunirng  5986  ovprc  5987  fnotovb  5995  ffnov  6056  eqfnov  6059  fnovim  6061  ovid  6069  ovidig  6070  ov  6072  ovigg  6073  fvmpopr2d  6089  ov6g  6091  ovg  6092  ovres  6093  fovcdm  6096  fnrnov  6099  foov  6100  fnovrn  6101  funimassov  6103  ovelimab  6104  ovconst2  6105  elmpocl  6148  oprssdmm  6264  mpofvex  6298  oprab2co  6311  algrflem  6322  algrflemg  6323  mpoxopn0yelv  6332  ovtposg  6352  addpiord  7436  mulpiord  7437  addvalex  7964  cnref1o  9779  ioof  10100  frecuzrdgrrn  10560  frec2uzrdg  10561  frecuzrdgrcl  10562  frecuzrdgsuc  10566  frecuzrdgrclt  10567  frecuzrdgg  10568  frecuzrdgsuctlem  10575  seq3val  10612  seqvalcd  10613  cnrecnv  11265  eucalgval  12420  eucalginv  12422  eucalglt  12423  eucalg  12425  sqpweven  12541  2sqpwodd  12542  isstructim  12890  isstructr  12891  relelbasov  12938  imasaddvallemg  13191  xpsff1o  13225  mgm1  13246  sgrp1  13287  mnd1  13331  mnd1id  13332  grp1  13482  srgfcl  13779  ring1  13865  txdis1cn  14794  lmcn2  14796  cnmpt12f  14802  cnmpt21  14807  cnmpt2t  14809  cnmpt22  14810  psmetxrge0  14848  xmeterval  14951  comet  15015  txmetcnp  15034  qtopbasss  15037  cnmetdval  15045  remetdval  15063  tgqioo  15071  mpomulcn  15082  mpodvdsmulf1o  15506  fsumdvdsmul  15507  opvtxov  15666  opiedgov  15669  edgov  15703
  Copyright terms: Public domain W3C validator