Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-ov | GIF version |
Description: Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. For example, if class 𝐹 is the operation + and arguments 𝐴 and 𝐵 are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets); see ovprc1 5874 and ovprc2 5875. On the other hand, we often find uses for this definition when 𝐹 is a proper class. 𝐹 is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5845. (Contributed by NM, 28-Feb-1995.) |
Ref | Expression |
---|---|
df-ov | ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | co 5841 | . 2 class (𝐴𝐹𝐵) |
5 | 1, 2 | cop 3578 | . . 3 class 〈𝐴, 𝐵〉 |
6 | 5, 3 | cfv 5187 | . 2 class (𝐹‘〈𝐴, 𝐵〉) |
7 | 4, 6 | wceq 1343 | 1 wff (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) |
Colors of variables: wff set class |
This definition is referenced by: oveq 5847 oveq1 5848 oveq2 5849 nfovd 5867 fnovex 5871 ovexg 5872 ovprc 5873 fnotovb 5881 ffnov 5942 eqfnov 5944 fnovim 5946 ovid 5954 ovidig 5955 ov 5957 ovigg 5958 ov6g 5975 ovg 5976 ovres 5977 fovrn 5980 fnrnov 5983 foov 5984 fnovrn 5985 funimassov 5987 ovelimab 5988 ovconst2 5989 elmpocl 6035 oprssdmm 6136 mpofvex 6168 oprab2co 6182 algrflem 6193 algrflemg 6194 mpoxopn0yelv 6203 ovtposg 6223 addpiord 7253 mulpiord 7254 addvalex 7781 cnref1o 9584 ioof 9903 frecuzrdgrrn 10339 frec2uzrdg 10340 frecuzrdgrcl 10341 frecuzrdgsuc 10345 frecuzrdgrclt 10346 frecuzrdgg 10347 frecuzrdgsuctlem 10354 seq3val 10389 seqvalcd 10390 cnrecnv 10848 eucalgval 11982 eucalginv 11984 eucalglt 11985 eucalg 11987 sqpweven 12103 2sqpwodd 12104 isstructim 12404 isstructr 12405 txdis1cn 12878 lmcn2 12880 cnmpt12f 12886 cnmpt21 12891 cnmpt2t 12893 cnmpt22 12894 psmetxrge0 12932 xmeterval 13035 comet 13099 txmetcnp 13118 qtopbasss 13121 cnmetdval 13129 remetdval 13139 tgqioo 13147 |
Copyright terms: Public domain | W3C validator |