ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ov GIF version

Definition df-ov 6010
Description: Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. For example, if class 𝐹 is the operation + and arguments 𝐴 and 𝐵 are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets); see ovprc1 6044 and ovprc2 6045. On the other hand, we often find uses for this definition when 𝐹 is a proper class. 𝐹 is normally equal to a class of nested ordered pairs of the form defined by df-oprab 6011. (Contributed by NM, 28-Feb-1995.)
Assertion
Ref Expression
df-ov (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)

Detailed syntax breakdown of Definition df-ov
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cF . . 3 class 𝐹
41, 2, 3co 6007 . 2 class (𝐴𝐹𝐵)
51, 2cop 3669 . . 3 class 𝐴, 𝐵
65, 3cfv 5318 . 2 class (𝐹‘⟨𝐴, 𝐵⟩)
74, 6wceq 1395 1 wff (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
Colors of variables: wff set class
This definition is referenced by:  oveq  6013  oveq1  6014  oveq2  6015  nfovd  6036  fnovex  6040  ovexg  6041  ovssunirng  6042  ovprc  6043  elovimad  6051  fnbrovb  6052  fnotovb  6053  ffnov  6114  eqfnov  6117  fnovim  6119  ovid  6127  ovidig  6128  ov  6130  ovigg  6131  fvmpopr2d  6147  ov6g  6149  ovg  6150  ovres  6151  fovcdm  6154  fnrnov  6157  foov  6158  fnovrn  6159  funimassov  6161  ovelimab  6162  ovconst2  6163  elmpocl  6206  oprssdmm  6323  mpofvex  6357  oprab2co  6370  algrflem  6381  algrflemg  6382  mpoxopn0yelv  6391  ovtposg  6411  addpiord  7511  mulpiord  7512  addvalex  8039  cnref1o  9854  ioof  10175  frecuzrdgrrn  10638  frec2uzrdg  10639  frecuzrdgrcl  10640  frecuzrdgsuc  10644  frecuzrdgrclt  10645  frecuzrdgg  10646  frecuzrdgsuctlem  10653  seq3val  10690  seqvalcd  10691  pfxclz  11219  cnrecnv  11429  eucalgval  12584  eucalginv  12586  eucalglt  12587  eucalg  12589  sqpweven  12705  2sqpwodd  12706  isstructim  13054  isstructr  13055  relelbasov  13103  imasaddvallemg  13356  xpsff1o  13390  mgm1  13411  sgrp1  13452  mnd1  13496  mnd1id  13497  grp1  13647  srgfcl  13944  ring1  14030  txdis1cn  14960  lmcn2  14962  cnmpt12f  14968  cnmpt21  14973  cnmpt2t  14975  cnmpt22  14976  psmetxrge0  15014  xmeterval  15117  comet  15181  txmetcnp  15200  qtopbasss  15203  cnmetdval  15211  remetdval  15229  tgqioo  15237  mpomulcn  15248  mpodvdsmulf1o  15672  fsumdvdsmul  15673  opvtxov  15832  opiedgov  15835  edgov  15871
  Copyright terms: Public domain W3C validator