ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvoprab2 GIF version

Theorem cbvoprab2 5926
Description: Change the second bound variable in an operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
cbvoprab2.1 𝑤𝜑
cbvoprab2.2 𝑦𝜓
cbvoprab2.3 (𝑦 = 𝑤 → (𝜑𝜓))
Assertion
Ref Expression
cbvoprab2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∣ 𝜓}
Distinct variable group:   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvoprab2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 nfv 1521 . . . . . . 7 𝑤 𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧
2 cbvoprab2.1 . . . . . . 7 𝑤𝜑
31, 2nfan 1558 . . . . . 6 𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
43nfex 1630 . . . . 5 𝑤𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
5 nfv 1521 . . . . . . 7 𝑦 𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧
6 cbvoprab2.2 . . . . . . 7 𝑦𝜓
75, 6nfan 1558 . . . . . 6 𝑦(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓)
87nfex 1630 . . . . 5 𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓)
9 opeq2 3766 . . . . . . . . 9 (𝑦 = 𝑤 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑤⟩)
109opeq1d 3771 . . . . . . . 8 (𝑦 = 𝑤 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩)
1110eqeq2d 2182 . . . . . . 7 (𝑦 = 𝑤 → (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩))
12 cbvoprab2.3 . . . . . . 7 (𝑦 = 𝑤 → (𝜑𝜓))
1311, 12anbi12d 470 . . . . . 6 (𝑦 = 𝑤 → ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓)))
1413exbidv 1818 . . . . 5 (𝑦 = 𝑤 → (∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓)))
154, 8, 14cbvex 1749 . . . 4 (∃𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑤𝑧(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓))
1615exbii 1598 . . 3 (∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑤𝑧(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓))
1716abbii 2286 . 2 {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑥𝑤𝑧(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓)}
18 df-oprab 5857 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
19 df-oprab 5857 . 2 {⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∣ 𝜓} = {𝑣 ∣ ∃𝑥𝑤𝑧(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓)}
2017, 18, 193eqtr4i 2201 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wnf 1453  wex 1485  {cab 2156  cop 3586  {coprab 5854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-oprab 5857
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator