![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfoprab3 | GIF version |
Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 22-Aug-2013.) |
Ref | Expression |
---|---|
nfoprab3 | ⊢ Ⅎ𝑧{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-oprab 5882 | . 2 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} | |
2 | nfe1 1496 | . . . . 5 ⊢ Ⅎ𝑧∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) | |
3 | 2 | nfex 1637 | . . . 4 ⊢ Ⅎ𝑧∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) |
4 | 3 | nfex 1637 | . . 3 ⊢ Ⅎ𝑧∃𝑥∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) |
5 | 4 | nfab 2324 | . 2 ⊢ Ⅎ𝑧{𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} |
6 | 1, 5 | nfcxfr 2316 | 1 ⊢ Ⅎ𝑧{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∃wex 1492 {cab 2163 Ⅎwnfc 2306 ⟨cop 3597 {coprab 5879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-oprab 5882 |
This theorem is referenced by: ssoprab2b 5935 ovi3 6014 tposoprab 6284 |
Copyright terms: Public domain | W3C validator |