ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfoprab3 GIF version

Theorem nfoprab3 5822
Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 22-Aug-2013.)
Assertion
Ref Expression
nfoprab3 𝑧{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}

Proof of Theorem nfoprab3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-oprab 5778 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
2 nfe1 1472 . . . . 5 𝑧𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
32nfex 1616 . . . 4 𝑧𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
43nfex 1616 . . 3 𝑧𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
54nfab 2286 . 2 𝑧{𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
61, 5nfcxfr 2278 1 𝑧{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1331  wex 1468  {cab 2125  wnfc 2268  cop 3530  {coprab 5775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-oprab 5778
This theorem is referenced by:  ssoprab2b  5828  ovi3  5907  tposoprab  6177
  Copyright terms: Public domain W3C validator