Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfoprab1 GIF version

Theorem nfoprab1 5786
 Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Assertion
Ref Expression
nfoprab1 𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}

Proof of Theorem nfoprab1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-oprab 5744 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
2 nfe1 1455 . . 3 𝑥𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
32nfab 2261 . 2 𝑥{𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
41, 3nfcxfr 2253 1 𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 Colors of variables: wff set class Syntax hints:   ∧ wa 103   = wceq 1314  ∃wex 1451  {cab 2101  Ⅎwnfc 2243  ⟨cop 3498  {coprab 5741 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-oprab 5744 This theorem is referenced by:  ssoprab2b  5794  nfmpo1  5804  ovi3  5873  tposoprab  6143
 Copyright terms: Public domain W3C validator