ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pw GIF version

Definition df-pw 3620
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if 𝐴 is { 3 , 5 , 7 }, then 𝒫 𝐴 is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-pw 𝒫 𝐴 = {𝑥𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3 class 𝐴
21cpw 3618 . 2 class 𝒫 𝐴
3 vx . . . . 5 setvar 𝑥
43cv 1372 . . . 4 class 𝑥
54, 1wss 3168 . . 3 wff 𝑥𝐴
65, 3cab 2192 . 2 class {𝑥𝑥𝐴}
72, 6wceq 1373 1 wff 𝒫 𝐴 = {𝑥𝑥𝐴}
Colors of variables: wff set class
This definition is referenced by:  pweq  3621  elpw  3624  nfpw  3631  pwss  3634  pw0  3783  snsspw  3808  pwsnss  3847  vpwex  4228  abssexg  4231  iunpw  4532  iotass  5255  mapex  6751  ssenen  6960  tgvalex  13145  bdcpw  15919
  Copyright terms: Public domain W3C validator