ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pw GIF version

Definition df-pw 3512
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if 𝐴 is { 3 , 5 , 7 }, then 𝒫 𝐴 is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-pw 𝒫 𝐴 = {𝑥𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3 class 𝐴
21cpw 3510 . 2 class 𝒫 𝐴
3 vx . . . . 5 setvar 𝑥
43cv 1330 . . . 4 class 𝑥
54, 1wss 3071 . . 3 wff 𝑥𝐴
65, 3cab 2125 . 2 class {𝑥𝑥𝐴}
72, 6wceq 1331 1 wff 𝒫 𝐴 = {𝑥𝑥𝐴}
Colors of variables: wff set class
This definition is referenced by:  pweq  3513  elpw  3516  nfpw  3523  pwss  3526  pw0  3667  snsspw  3691  pwsnss  3730  vpwex  4103  abssexg  4106  iunpw  4401  iotass  5105  mapex  6548  ssenen  6745  tgvalex  12233  bdcpw  13126
  Copyright terms: Public domain W3C validator