ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pw GIF version

Definition df-pw 3560
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if 𝐴 is { 3 , 5 , 7 }, then 𝒫 𝐴 is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-pw 𝒫 𝐴 = {𝑥𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3 class 𝐴
21cpw 3558 . 2 class 𝒫 𝐴
3 vx . . . . 5 setvar 𝑥
43cv 1342 . . . 4 class 𝑥
54, 1wss 3115 . . 3 wff 𝑥𝐴
65, 3cab 2151 . 2 class {𝑥𝑥𝐴}
72, 6wceq 1343 1 wff 𝒫 𝐴 = {𝑥𝑥𝐴}
Colors of variables: wff set class
This definition is referenced by:  pweq  3561  elpw  3564  nfpw  3571  pwss  3574  pw0  3719  snsspw  3743  pwsnss  3782  vpwex  4157  abssexg  4160  iunpw  4457  iotass  5169  mapex  6616  ssenen  6813  tgvalex  12650  bdcpw  13711
  Copyright terms: Public domain W3C validator