ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pw GIF version

Definition df-pw 3592
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if 𝐴 is { 3 , 5 , 7 }, then 𝒫 𝐴 is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-pw 𝒫 𝐴 = {𝑥𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3 class 𝐴
21cpw 3590 . 2 class 𝒫 𝐴
3 vx . . . . 5 setvar 𝑥
43cv 1363 . . . 4 class 𝑥
54, 1wss 3144 . . 3 wff 𝑥𝐴
65, 3cab 2175 . 2 class {𝑥𝑥𝐴}
72, 6wceq 1364 1 wff 𝒫 𝐴 = {𝑥𝑥𝐴}
Colors of variables: wff set class
This definition is referenced by:  pweq  3593  elpw  3596  nfpw  3603  pwss  3606  pw0  3754  snsspw  3779  pwsnss  3818  vpwex  4194  abssexg  4197  iunpw  4495  iotass  5210  mapex  6672  ssenen  6869  tgvalex  12734  bdcpw  15018
  Copyright terms: Public domain W3C validator