ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pw GIF version

Definition df-pw 3568
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if 𝐴 is { 3 , 5 , 7 }, then 𝒫 𝐴 is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-pw 𝒫 𝐴 = {𝑥𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3 class 𝐴
21cpw 3566 . 2 class 𝒫 𝐴
3 vx . . . . 5 setvar 𝑥
43cv 1347 . . . 4 class 𝑥
54, 1wss 3121 . . 3 wff 𝑥𝐴
65, 3cab 2156 . 2 class {𝑥𝑥𝐴}
72, 6wceq 1348 1 wff 𝒫 𝐴 = {𝑥𝑥𝐴}
Colors of variables: wff set class
This definition is referenced by:  pweq  3569  elpw  3572  nfpw  3579  pwss  3582  pw0  3727  snsspw  3751  pwsnss  3790  vpwex  4165  abssexg  4168  iunpw  4465  iotass  5177  mapex  6632  ssenen  6829  tgvalex  12844  bdcpw  13904
  Copyright terms: Public domain W3C validator