ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pw GIF version

Definition df-pw 3566
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if 𝐴 is { 3 , 5 , 7 }, then 𝒫 𝐴 is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-pw 𝒫 𝐴 = {𝑥𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3 class 𝐴
21cpw 3564 . 2 class 𝒫 𝐴
3 vx . . . . 5 setvar 𝑥
43cv 1347 . . . 4 class 𝑥
54, 1wss 3121 . . 3 wff 𝑥𝐴
65, 3cab 2156 . 2 class {𝑥𝑥𝐴}
72, 6wceq 1348 1 wff 𝒫 𝐴 = {𝑥𝑥𝐴}
Colors of variables: wff set class
This definition is referenced by:  pweq  3567  elpw  3570  nfpw  3577  pwss  3580  pw0  3725  snsspw  3749  pwsnss  3788  vpwex  4163  abssexg  4166  iunpw  4463  iotass  5175  mapex  6628  ssenen  6825  tgvalex  12765  bdcpw  13826
  Copyright terms: Public domain W3C validator