ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pw GIF version

Definition df-pw 3651
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if 𝐴 is { 3 , 5 , 7 }, then 𝒫 𝐴 is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-pw 𝒫 𝐴 = {𝑥𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3 class 𝐴
21cpw 3649 . 2 class 𝒫 𝐴
3 vx . . . . 5 setvar 𝑥
43cv 1394 . . . 4 class 𝑥
54, 1wss 3197 . . 3 wff 𝑥𝐴
65, 3cab 2215 . 2 class {𝑥𝑥𝐴}
72, 6wceq 1395 1 wff 𝒫 𝐴 = {𝑥𝑥𝐴}
Colors of variables: wff set class
This definition is referenced by:  pweq  3652  elpw  3655  nfpw  3662  pwss  3665  pw0  3814  snsspw  3841  pwsnss  3881  vpwex  4262  abssexg  4265  iunpw  4568  iotass  5292  mapex  6791  ssenen  7000  tgvalex  13282  bdcpw  16162
  Copyright terms: Public domain W3C validator