ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pw GIF version

Definition df-pw 3578
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if 𝐴 is { 3 , 5 , 7 }, then 𝒫 𝐴 is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-pw 𝒫 𝐴 = {𝑥𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3 class 𝐴
21cpw 3576 . 2 class 𝒫 𝐴
3 vx . . . . 5 setvar 𝑥
43cv 1352 . . . 4 class 𝑥
54, 1wss 3130 . . 3 wff 𝑥𝐴
65, 3cab 2163 . 2 class {𝑥𝑥𝐴}
72, 6wceq 1353 1 wff 𝒫 𝐴 = {𝑥𝑥𝐴}
Colors of variables: wff set class
This definition is referenced by:  pweq  3579  elpw  3582  nfpw  3589  pwss  3592  pw0  3740  snsspw  3765  pwsnss  3804  vpwex  4180  abssexg  4183  iunpw  4481  iotass  5196  mapex  6654  ssenen  6851  tgvalex  12712  bdcpw  14624
  Copyright terms: Public domain W3C validator