ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pw GIF version

Definition df-pw 3608
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if 𝐴 is { 3 , 5 , 7 }, then 𝒫 𝐴 is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-pw 𝒫 𝐴 = {𝑥𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3 class 𝐴
21cpw 3606 . 2 class 𝒫 𝐴
3 vx . . . . 5 setvar 𝑥
43cv 1363 . . . 4 class 𝑥
54, 1wss 3157 . . 3 wff 𝑥𝐴
65, 3cab 2182 . 2 class {𝑥𝑥𝐴}
72, 6wceq 1364 1 wff 𝒫 𝐴 = {𝑥𝑥𝐴}
Colors of variables: wff set class
This definition is referenced by:  pweq  3609  elpw  3612  nfpw  3619  pwss  3622  pw0  3770  snsspw  3795  pwsnss  3834  vpwex  4213  abssexg  4216  iunpw  4516  iotass  5237  mapex  6722  ssenen  6921  tgvalex  12965  bdcpw  15599
  Copyright terms: Public domain W3C validator