| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pweq | GIF version | ||
| Description: Equality theorem for power class. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| pweq | ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3216 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) | |
| 2 | 1 | abbidv 2322 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ 𝑥 ⊆ 𝐴} = {𝑥 ∣ 𝑥 ⊆ 𝐵}) |
| 3 | df-pw 3617 | . 2 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
| 4 | df-pw 3617 | . 2 ⊢ 𝒫 𝐵 = {𝑥 ∣ 𝑥 ⊆ 𝐵} | |
| 5 | 2, 3, 4 | 3eqtr4g 2262 | 1 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 {cab 2190 ⊆ wss 3165 𝒫 cpw 3615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 df-pw 3617 |
| This theorem is referenced by: pweqi 3619 pweqd 3620 axpweq 4214 pwexg 4223 pwssunim 4330 ordpwsucexmid 4617 exmidpw2en 7008 fival 7071 isacnm 7314 istopg 14413 istopon 14427 eltg 14466 tgdom 14486 ntrval 14524 |
| Copyright terms: Public domain | W3C validator |