ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pweq GIF version

Theorem pweq 3624
Description: Equality theorem for power class. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pweq (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵)

Proof of Theorem pweq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3221 . . 3 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21abbidv 2324 . 2 (𝐴 = 𝐵 → {𝑥𝑥𝐴} = {𝑥𝑥𝐵})
3 df-pw 3623 . 2 𝒫 𝐴 = {𝑥𝑥𝐴}
4 df-pw 3623 . 2 𝒫 𝐵 = {𝑥𝑥𝐵}
52, 3, 43eqtr4g 2264 1 (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  {cab 2192  wss 3170  𝒫 cpw 3621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3176  df-ss 3183  df-pw 3623
This theorem is referenced by:  pweqi  3625  pweqd  3626  axpweq  4223  pwexg  4232  pwssunim  4339  ordpwsucexmid  4626  exmidpw2en  7024  fival  7087  isacnm  7331  istopg  14546  istopon  14560  eltg  14599  tgdom  14619  ntrval  14657  uhgreq12g  15747  uhgr0vb  15755  isupgren  15766  isumgren  15776
  Copyright terms: Public domain W3C validator