ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pweq GIF version

Theorem pweq 3609
Description: Equality theorem for power class. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pweq (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵)

Proof of Theorem pweq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3208 . . 3 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21abbidv 2314 . 2 (𝐴 = 𝐵 → {𝑥𝑥𝐴} = {𝑥𝑥𝐵})
3 df-pw 3608 . 2 𝒫 𝐴 = {𝑥𝑥𝐴}
4 df-pw 3608 . 2 𝒫 𝐵 = {𝑥𝑥𝐵}
52, 3, 43eqtr4g 2254 1 (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  {cab 2182  wss 3157  𝒫 cpw 3606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-pw 3608
This theorem is referenced by:  pweqi  3610  pweqd  3611  axpweq  4205  pwexg  4214  pwssunim  4320  ordpwsucexmid  4607  exmidpw2en  6982  fival  7045  isacnm  7286  istopg  14319  istopon  14333  eltg  14372  tgdom  14392  ntrval  14430
  Copyright terms: Public domain W3C validator