ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pweq GIF version

Theorem pweq 3604
Description: Equality theorem for power class. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pweq (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵)

Proof of Theorem pweq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3203 . . 3 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21abbidv 2311 . 2 (𝐴 = 𝐵 → {𝑥𝑥𝐴} = {𝑥𝑥𝐵})
3 df-pw 3603 . 2 𝒫 𝐴 = {𝑥𝑥𝐴}
4 df-pw 3603 . 2 𝒫 𝐵 = {𝑥𝑥𝐵}
52, 3, 43eqtr4g 2251 1 (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  {cab 2179  wss 3153  𝒫 cpw 3601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166  df-pw 3603
This theorem is referenced by:  pweqi  3605  pweqd  3606  axpweq  4200  pwexg  4209  pwssunim  4315  ordpwsucexmid  4602  exmidpw2en  6968  fival  7029  istopg  14167  istopon  14181  eltg  14220  tgdom  14240  ntrval  14278
  Copyright terms: Public domain W3C validator