ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pweq GIF version

Theorem pweq 3652
Description: Equality theorem for power class. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pweq (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵)

Proof of Theorem pweq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3248 . . 3 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21abbidv 2347 . 2 (𝐴 = 𝐵 → {𝑥𝑥𝐴} = {𝑥𝑥𝐵})
3 df-pw 3651 . 2 𝒫 𝐴 = {𝑥𝑥𝐴}
4 df-pw 3651 . 2 𝒫 𝐵 = {𝑥𝑥𝐵}
52, 3, 43eqtr4g 2287 1 (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  {cab 2215  wss 3197  𝒫 cpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-pw 3651
This theorem is referenced by:  pweqi  3653  pweqd  3654  axpweq  4254  pwexg  4263  pwssunim  4374  ordpwsucexmid  4661  exmidpw2en  7070  fival  7133  isacnm  7381  istopg  14667  istopon  14681  eltg  14720  tgdom  14740  ntrval  14778  uhgreq12g  15870  uhgr0vb  15878  isupgren  15889  isumgren  15899  isuspgren  15949  isusgren  15950  isausgren  15959
  Copyright terms: Public domain W3C validator