Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pweq | GIF version |
Description: Equality theorem for power class. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
pweq | ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3166 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) | |
2 | 1 | abbidv 2284 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ 𝑥 ⊆ 𝐴} = {𝑥 ∣ 𝑥 ⊆ 𝐵}) |
3 | df-pw 3561 | . 2 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
4 | df-pw 3561 | . 2 ⊢ 𝒫 𝐵 = {𝑥 ∣ 𝑥 ⊆ 𝐵} | |
5 | 2, 3, 4 | 3eqtr4g 2224 | 1 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 {cab 2151 ⊆ wss 3116 𝒫 cpw 3559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-pw 3561 |
This theorem is referenced by: pweqi 3563 pweqd 3564 axpweq 4150 pwexg 4159 pwssunim 4262 ordpwsucexmid 4547 fival 6935 istopg 12647 istopon 12661 eltg 12702 tgdom 12722 ntrval 12760 |
Copyright terms: Public domain | W3C validator |