ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pweq GIF version

Theorem pweq 3618
Description: Equality theorem for power class. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pweq (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵)

Proof of Theorem pweq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3216 . . 3 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21abbidv 2322 . 2 (𝐴 = 𝐵 → {𝑥𝑥𝐴} = {𝑥𝑥𝐵})
3 df-pw 3617 . 2 𝒫 𝐴 = {𝑥𝑥𝐴}
4 df-pw 3617 . 2 𝒫 𝐵 = {𝑥𝑥𝐵}
52, 3, 43eqtr4g 2262 1 (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  {cab 2190  wss 3165  𝒫 cpw 3615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-in 3171  df-ss 3178  df-pw 3617
This theorem is referenced by:  pweqi  3619  pweqd  3620  axpweq  4214  pwexg  4223  pwssunim  4330  ordpwsucexmid  4617  exmidpw2en  7008  fival  7071  isacnm  7314  istopg  14413  istopon  14427  eltg  14466  tgdom  14486  ntrval  14524
  Copyright terms: Public domain W3C validator