| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pweq | GIF version | ||
| Description: Equality theorem for power class. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| pweq | ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sseq2 3207 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) | |
| 2 | 1 | abbidv 2314 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ 𝑥 ⊆ 𝐴} = {𝑥 ∣ 𝑥 ⊆ 𝐵}) | 
| 3 | df-pw 3607 | . 2 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
| 4 | df-pw 3607 | . 2 ⊢ 𝒫 𝐵 = {𝑥 ∣ 𝑥 ⊆ 𝐵} | |
| 5 | 2, 3, 4 | 3eqtr4g 2254 | 1 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 {cab 2182 ⊆ wss 3157 𝒫 cpw 3605 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-pw 3607 | 
| This theorem is referenced by: pweqi 3609 pweqd 3610 axpweq 4204 pwexg 4213 pwssunim 4319 ordpwsucexmid 4606 exmidpw2en 6973 fival 7036 istopg 14235 istopon 14249 eltg 14288 tgdom 14308 ntrval 14346 | 
| Copyright terms: Public domain | W3C validator |