ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapex GIF version

Theorem mapex 6809
Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.)
Assertion
Ref Expression
mapex ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem mapex
StepHypRef Expression
1 fssxp 5493 . . . 4 (𝑓:𝐴𝐵𝑓 ⊆ (𝐴 × 𝐵))
21ss2abi 3296 . . 3 {𝑓𝑓:𝐴𝐵} ⊆ {𝑓𝑓 ⊆ (𝐴 × 𝐵)}
3 df-pw 3651 . . 3 𝒫 (𝐴 × 𝐵) = {𝑓𝑓 ⊆ (𝐴 × 𝐵)}
42, 3sseqtrri 3259 . 2 {𝑓𝑓:𝐴𝐵} ⊆ 𝒫 (𝐴 × 𝐵)
5 xpexg 4833 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 × 𝐵) ∈ V)
6 pwexg 4264 . . 3 ((𝐴 × 𝐵) ∈ V → 𝒫 (𝐴 × 𝐵) ∈ V)
75, 6syl 14 . 2 ((𝐴𝐶𝐵𝐷) → 𝒫 (𝐴 × 𝐵) ∈ V)
8 ssexg 4223 . 2 (({𝑓𝑓:𝐴𝐵} ⊆ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ∈ V) → {𝑓𝑓:𝐴𝐵} ∈ V)
94, 7, 8sylancr 414 1 ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  {cab 2215  Vcvv 2799  wss 3197  𝒫 cpw 3649   × cxp 4717  wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322
This theorem is referenced by:  fnmap  6810  mapvalg  6813  exmidpw2en  7082  nninfex  7296  ptex  13305  isghm  13788  psrval  14638  psrbasg  14646  cnovex  14878  ispsmet  15005  cncfval  15254  wksfval  16043  wlkex  16046
  Copyright terms: Public domain W3C validator