![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mapex | GIF version |
Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.) |
Ref | Expression |
---|---|
mapex | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 5402 | . . . 4 ⊢ (𝑓:𝐴⟶𝐵 → 𝑓 ⊆ (𝐴 × 𝐵)) | |
2 | 1 | ss2abi 3242 | . . 3 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ {𝑓 ∣ 𝑓 ⊆ (𝐴 × 𝐵)} |
3 | df-pw 3592 | . . 3 ⊢ 𝒫 (𝐴 × 𝐵) = {𝑓 ∣ 𝑓 ⊆ (𝐴 × 𝐵)} | |
4 | 2, 3 | sseqtrri 3205 | . 2 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) |
5 | xpexg 4758 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 × 𝐵) ∈ V) | |
6 | pwexg 4198 | . . 3 ⊢ ((𝐴 × 𝐵) ∈ V → 𝒫 (𝐴 × 𝐵) ∈ V) | |
7 | 5, 6 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝒫 (𝐴 × 𝐵) ∈ V) |
8 | ssexg 4157 | . 2 ⊢ (({𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ∈ V) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) | |
9 | 4, 7, 8 | sylancr 414 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2160 {cab 2175 Vcvv 2752 ⊆ wss 3144 𝒫 cpw 3590 × cxp 4642 ⟶wf 5231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-xp 4650 df-rel 4651 df-cnv 4652 df-dm 4654 df-rn 4655 df-fun 5237 df-fn 5238 df-f 5239 |
This theorem is referenced by: fnmap 6682 mapvalg 6685 exmidpw2en 6941 nninfex 7151 ptex 12772 isghm 13199 psrval 13961 psrbasg 13968 cnovex 14173 ispsmet 14300 cncfval 14536 |
Copyright terms: Public domain | W3C validator |