Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mapex | GIF version |
Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.) |
Ref | Expression |
---|---|
mapex | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 5365 | . . . 4 ⊢ (𝑓:𝐴⟶𝐵 → 𝑓 ⊆ (𝐴 × 𝐵)) | |
2 | 1 | ss2abi 3219 | . . 3 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ {𝑓 ∣ 𝑓 ⊆ (𝐴 × 𝐵)} |
3 | df-pw 3568 | . . 3 ⊢ 𝒫 (𝐴 × 𝐵) = {𝑓 ∣ 𝑓 ⊆ (𝐴 × 𝐵)} | |
4 | 2, 3 | sseqtrri 3182 | . 2 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) |
5 | xpexg 4725 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 × 𝐵) ∈ V) | |
6 | pwexg 4166 | . . 3 ⊢ ((𝐴 × 𝐵) ∈ V → 𝒫 (𝐴 × 𝐵) ∈ V) | |
7 | 5, 6 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝒫 (𝐴 × 𝐵) ∈ V) |
8 | ssexg 4128 | . 2 ⊢ (({𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ∈ V) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) | |
9 | 4, 7, 8 | sylancr 412 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 {cab 2156 Vcvv 2730 ⊆ wss 3121 𝒫 cpw 3566 × cxp 4609 ⟶wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-f 5202 |
This theorem is referenced by: fnmap 6633 mapvalg 6636 nninfex 7098 cnovex 12990 ispsmet 13117 cncfval 13353 |
Copyright terms: Public domain | W3C validator |