ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsspw GIF version

Theorem snsspw 3841
Description: The singleton of a class is a subset of its power class. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
snsspw {𝐴} ⊆ 𝒫 𝐴

Proof of Theorem snsspw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqimss 3278 . . 3 (𝑥 = 𝐴𝑥𝐴)
2 velsn 3683 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
3 df-pw 3651 . . . 4 𝒫 𝐴 = {𝑥𝑥𝐴}
43abeq2i 2340 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
51, 2, 43imtr4i 201 . 2 (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝒫 𝐴)
65ssriv 3228 1 {𝐴} ⊆ 𝒫 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  wss 3197  𝒫 cpw 3649  {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672
This theorem is referenced by:  snexg  4267
  Copyright terms: Public domain W3C validator