ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsspw GIF version

Theorem snsspw 3804
Description: The singleton of a class is a subset of its power class. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
snsspw {𝐴} ⊆ 𝒫 𝐴

Proof of Theorem snsspw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqimss 3246 . . 3 (𝑥 = 𝐴𝑥𝐴)
2 velsn 3649 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
3 df-pw 3617 . . . 4 𝒫 𝐴 = {𝑥𝑥𝐴}
43abeq2i 2315 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
51, 2, 43imtr4i 201 . 2 (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝒫 𝐴)
65ssriv 3196 1 {𝐴} ⊆ 𝒫 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wcel 2175  wss 3165  𝒫 cpw 3615  {csn 3632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638
This theorem is referenced by:  snexg  4227
  Copyright terms: Public domain W3C validator