ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsspw GIF version

Theorem snsspw 3744
Description: The singleton of a class is a subset of its power class. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
snsspw {𝐴} ⊆ 𝒫 𝐴

Proof of Theorem snsspw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqimss 3196 . . 3 (𝑥 = 𝐴𝑥𝐴)
2 velsn 3593 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
3 df-pw 3561 . . . 4 𝒫 𝐴 = {𝑥𝑥𝐴}
43abeq2i 2277 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
51, 2, 43imtr4i 200 . 2 (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝒫 𝐴)
65ssriv 3146 1 {𝐴} ⊆ 𝒫 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  wss 3116  𝒫 cpw 3559  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582
This theorem is referenced by:  snexg  4163
  Copyright terms: Public domain W3C validator