| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > snsspw | GIF version | ||
| Description: The singleton of a class is a subset of its power class. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| snsspw | ⊢ {𝐴} ⊆ 𝒫 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqimss 3237 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 ⊆ 𝐴) | |
| 2 | velsn 3639 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 3 | df-pw 3607 | . . . 4 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
| 4 | 3 | abeq2i 2307 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | 
| 5 | 1, 2, 4 | 3imtr4i 201 | . 2 ⊢ (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝒫 𝐴) | 
| 6 | 5 | ssriv 3187 | 1 ⊢ {𝐴} ⊆ 𝒫 𝐴 | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 𝒫 cpw 3605 {csn 3622 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 | 
| This theorem is referenced by: snexg 4217 | 
| Copyright terms: Public domain | W3C validator |