ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsspw GIF version

Theorem snsspw 3760
Description: The singleton of a class is a subset of its power class. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
snsspw {𝐴} ⊆ 𝒫 𝐴

Proof of Theorem snsspw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqimss 3207 . . 3 (𝑥 = 𝐴𝑥𝐴)
2 velsn 3606 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
3 df-pw 3574 . . . 4 𝒫 𝐴 = {𝑥𝑥𝐴}
43abeq2i 2286 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
51, 2, 43imtr4i 201 . 2 (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝒫 𝐴)
65ssriv 3157 1 {𝐴} ⊆ 𝒫 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2146  wss 3127  𝒫 cpw 3572  {csn 3589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595
This theorem is referenced by:  snexg  4179
  Copyright terms: Public domain W3C validator