Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snsspw | GIF version |
Description: The singleton of a class is a subset of its power class. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
snsspw | ⊢ {𝐴} ⊆ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3201 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 ⊆ 𝐴) | |
2 | velsn 3600 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
3 | df-pw 3568 | . . . 4 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
4 | 3 | abeq2i 2281 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
5 | 1, 2, 4 | 3imtr4i 200 | . 2 ⊢ (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝒫 𝐴) |
6 | 5 | ssriv 3151 | 1 ⊢ {𝐴} ⊆ 𝒫 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 ⊆ wss 3121 𝒫 cpw 3566 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 |
This theorem is referenced by: snexg 4170 |
Copyright terms: Public domain | W3C validator |