| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snsspw | GIF version | ||
| Description: The singleton of a class is a subset of its power class. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| snsspw | ⊢ {𝐴} ⊆ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3251 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 ⊆ 𝐴) | |
| 2 | velsn 3655 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 3 | df-pw 3623 | . . . 4 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
| 4 | 3 | abeq2i 2317 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| 5 | 1, 2, 4 | 3imtr4i 201 | . 2 ⊢ (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝒫 𝐴) |
| 6 | 5 | ssriv 3201 | 1 ⊢ {𝐴} ⊆ 𝒫 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 ⊆ wss 3170 𝒫 cpw 3621 {csn 3638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 |
| This theorem is referenced by: snexg 4239 |
| Copyright terms: Public domain | W3C validator |