ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpw GIF version

Theorem elpw 3655
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.)
Hypothesis
Ref Expression
elpw.1 𝐴 ∈ V
Assertion
Ref Expression
elpw (𝐴 ∈ 𝒫 𝐵𝐴𝐵)

Proof of Theorem elpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elpw.1 . 2 𝐴 ∈ V
2 sseq1 3247 . 2 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
3 df-pw 3651 . 2 𝒫 𝐵 = {𝑥𝑥𝐵}
41, 2, 3elab2 2951 1 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2200  Vcvv 2799  wss 3197  𝒫 cpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651
This theorem is referenced by:  velpw  3656  elpwg  3657  prsspw  3843  pwprss  3884  pwtpss  3885  pwv  3887  sspwuni  4050  iinpw  4056  iunpwss  4057  0elpw  4248  pwuni  4276  snelpw  4298  sspwb  4302  ssextss  4306  pwin  4373  pwunss  4374  iunpw  4571  xpsspw  4831  ssenen  7020  pw1ne3  7423  3nsssucpw1  7429  ioof  10175  tgdom  14754  distop  14767  epttop  14772  resttopon  14853  txuni2  14938  umgrbien  15918  umgredg  15951
  Copyright terms: Public domain W3C validator