| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpw | GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| elpw.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elpw | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sseq1 3247 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | df-pw 3651 | . 2 ⊢ 𝒫 𝐵 = {𝑥 ∣ 𝑥 ⊆ 𝐵} | |
| 4 | 1, 2, 3 | elab2 2951 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 𝒫 cpw 3649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 |
| This theorem is referenced by: velpw 3656 elpwg 3657 prsspw 3842 pwprss 3883 pwtpss 3884 pwv 3886 sspwuni 4049 iinpw 4055 iunpwss 4056 0elpw 4247 pwuni 4275 snelpw 4297 sspwb 4301 ssextss 4305 pwin 4370 pwunss 4371 iunpw 4568 xpsspw 4828 ssenen 7000 pw1ne3 7403 3nsssucpw1 7409 ioof 10155 tgdom 14731 distop 14744 epttop 14749 resttopon 14830 txuni2 14915 umgrbien 15895 umgredg 15928 |
| Copyright terms: Public domain | W3C validator |