Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpw | GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
elpw.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elpw | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sseq1 3165 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | df-pw 3561 | . 2 ⊢ 𝒫 𝐵 = {𝑥 ∣ 𝑥 ⊆ 𝐵} | |
4 | 1, 2, 3 | elab2 2874 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 𝒫 cpw 3559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 |
This theorem is referenced by: velpw 3566 elpwg 3567 prsspw 3745 pwprss 3785 pwtpss 3786 pwv 3788 sspwuni 3950 iinpw 3956 iunpwss 3957 0elpw 4143 pwuni 4171 snelpw 4191 sspwb 4194 ssextss 4198 pwin 4260 pwunss 4261 iunpw 4458 xpsspw 4716 ssenen 6817 pw1ne3 7186 3nsssucpw1 7192 ioof 9907 tgdom 12712 distop 12725 epttop 12730 resttopon 12811 txuni2 12896 |
Copyright terms: Public domain | W3C validator |