ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpw GIF version

Theorem elpw 3608
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.)
Hypothesis
Ref Expression
elpw.1 𝐴 ∈ V
Assertion
Ref Expression
elpw (𝐴 ∈ 𝒫 𝐵𝐴𝐵)

Proof of Theorem elpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elpw.1 . 2 𝐴 ∈ V
2 sseq1 3203 . 2 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
3 df-pw 3604 . 2 𝒫 𝐵 = {𝑥𝑥𝐵}
41, 2, 3elab2 2909 1 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2164  Vcvv 2760  wss 3154  𝒫 cpw 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3160  df-ss 3167  df-pw 3604
This theorem is referenced by:  velpw  3609  elpwg  3610  prsspw  3792  pwprss  3832  pwtpss  3833  pwv  3835  sspwuni  3998  iinpw  4004  iunpwss  4005  0elpw  4194  pwuni  4222  snelpw  4243  sspwb  4246  ssextss  4250  pwin  4314  pwunss  4315  iunpw  4512  xpsspw  4772  ssenen  6909  pw1ne3  7292  3nsssucpw1  7298  ioof  10040  tgdom  14251  distop  14264  epttop  14269  resttopon  14350  txuni2  14435
  Copyright terms: Public domain W3C validator