ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpw GIF version

Theorem elpw 3655
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.)
Hypothesis
Ref Expression
elpw.1 𝐴 ∈ V
Assertion
Ref Expression
elpw (𝐴 ∈ 𝒫 𝐵𝐴𝐵)

Proof of Theorem elpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elpw.1 . 2 𝐴 ∈ V
2 sseq1 3247 . 2 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
3 df-pw 3651 . 2 𝒫 𝐵 = {𝑥𝑥𝐵}
41, 2, 3elab2 2951 1 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2200  Vcvv 2799  wss 3197  𝒫 cpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651
This theorem is referenced by:  velpw  3656  elpwg  3657  prsspw  3842  pwprss  3883  pwtpss  3884  pwv  3886  sspwuni  4049  iinpw  4055  iunpwss  4056  0elpw  4247  pwuni  4275  snelpw  4297  sspwb  4301  ssextss  4305  pwin  4370  pwunss  4371  iunpw  4568  xpsspw  4828  ssenen  7000  pw1ne3  7403  3nsssucpw1  7409  ioof  10155  tgdom  14731  distop  14744  epttop  14749  resttopon  14830  txuni2  14915  umgrbien  15895  umgredg  15928
  Copyright terms: Public domain W3C validator