ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssenen GIF version

Theorem ssenen 6947
Description: Equinumerosity of equinumerous subsets of a set. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
ssenen (𝐴𝐵 → {𝑥 ∣ (𝑥𝐴𝑥𝐶)} ≈ {𝑥 ∣ (𝑥𝐵𝑥𝐶)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem ssenen
Dummy variables 𝑦 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6834 . . 3 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
2 f1odm 5525 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → dom 𝑓 = 𝐴)
3 vex 2774 . . . . . . . 8 𝑓 ∈ V
43dmex 4944 . . . . . . 7 dom 𝑓 ∈ V
52, 4eqeltrrdi 2296 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝐴 ∈ V)
6 pwexg 4223 . . . . . 6 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
7 inex1g 4179 . . . . . 6 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ∈ V)
85, 6, 73syl 17 . . . . 5 (𝑓:𝐴1-1-onto𝐵 → (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ∈ V)
9 f1ofo 5528 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
10 forn 5500 . . . . . . . 8 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
119, 10syl 14 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → ran 𝑓 = 𝐵)
123rnex 4945 . . . . . . 7 ran 𝑓 ∈ V
1311, 12eqeltrrdi 2296 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝐵 ∈ V)
14 pwexg 4223 . . . . . 6 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
15 inex1g 4179 . . . . . 6 (𝒫 𝐵 ∈ V → (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) ∈ V)
1613, 14, 153syl 17 . . . . 5 (𝑓:𝐴1-1-onto𝐵 → (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) ∈ V)
17 f1of1 5520 . . . . . . . . . . 11 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴1-1𝐵)
1817adantr 276 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝑦𝐴) → 𝑓:𝐴1-1𝐵)
1913adantr 276 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝑦𝐴) → 𝐵 ∈ V)
20 simpr 110 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝑦𝐴) → 𝑦𝐴)
21 vex 2774 . . . . . . . . . . 11 𝑦 ∈ V
2221a1i 9 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝑦𝐴) → 𝑦 ∈ V)
23 f1imaen2g 6884 . . . . . . . . . 10 (((𝑓:𝐴1-1𝐵𝐵 ∈ V) ∧ (𝑦𝐴𝑦 ∈ V)) → (𝑓𝑦) ≈ 𝑦)
2418, 19, 20, 22, 23syl22anc 1250 . . . . . . . . 9 ((𝑓:𝐴1-1-onto𝐵𝑦𝐴) → (𝑓𝑦) ≈ 𝑦)
25 entr 6875 . . . . . . . . 9 (((𝑓𝑦) ≈ 𝑦𝑦𝐶) → (𝑓𝑦) ≈ 𝐶)
2624, 25sylan 283 . . . . . . . 8 (((𝑓:𝐴1-1-onto𝐵𝑦𝐴) ∧ 𝑦𝐶) → (𝑓𝑦) ≈ 𝐶)
2726expl 378 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → ((𝑦𝐴𝑦𝐶) → (𝑓𝑦) ≈ 𝐶))
28 imassrn 5032 . . . . . . . . 9 (𝑓𝑦) ⊆ ran 𝑓
2928, 10sseqtrid 3242 . . . . . . . 8 (𝑓:𝐴onto𝐵 → (𝑓𝑦) ⊆ 𝐵)
309, 29syl 14 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → (𝑓𝑦) ⊆ 𝐵)
3127, 30jctild 316 . . . . . 6 (𝑓:𝐴1-1-onto𝐵 → ((𝑦𝐴𝑦𝐶) → ((𝑓𝑦) ⊆ 𝐵 ∧ (𝑓𝑦) ≈ 𝐶)))
32 elin 3355 . . . . . . 7 (𝑦 ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ↔ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ {𝑥𝑥𝐶}))
3321elpw 3621 . . . . . . . 8 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
34 breq1 4046 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐶𝑦𝐶))
3521, 34elab 2916 . . . . . . . 8 (𝑦 ∈ {𝑥𝑥𝐶} ↔ 𝑦𝐶)
3633, 35anbi12i 460 . . . . . . 7 ((𝑦 ∈ 𝒫 𝐴𝑦 ∈ {𝑥𝑥𝐶}) ↔ (𝑦𝐴𝑦𝐶))
3732, 36bitri 184 . . . . . 6 (𝑦 ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ↔ (𝑦𝐴𝑦𝐶))
38 elin 3355 . . . . . . 7 ((𝑓𝑦) ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) ↔ ((𝑓𝑦) ∈ 𝒫 𝐵 ∧ (𝑓𝑦) ∈ {𝑥𝑥𝐶}))
393imaex 5036 . . . . . . . . 9 (𝑓𝑦) ∈ V
4039elpw 3621 . . . . . . . 8 ((𝑓𝑦) ∈ 𝒫 𝐵 ↔ (𝑓𝑦) ⊆ 𝐵)
41 breq1 4046 . . . . . . . . 9 (𝑥 = (𝑓𝑦) → (𝑥𝐶 ↔ (𝑓𝑦) ≈ 𝐶))
4239, 41elab 2916 . . . . . . . 8 ((𝑓𝑦) ∈ {𝑥𝑥𝐶} ↔ (𝑓𝑦) ≈ 𝐶)
4340, 42anbi12i 460 . . . . . . 7 (((𝑓𝑦) ∈ 𝒫 𝐵 ∧ (𝑓𝑦) ∈ {𝑥𝑥𝐶}) ↔ ((𝑓𝑦) ⊆ 𝐵 ∧ (𝑓𝑦) ≈ 𝐶))
4438, 43bitri 184 . . . . . 6 ((𝑓𝑦) ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) ↔ ((𝑓𝑦) ⊆ 𝐵 ∧ (𝑓𝑦) ≈ 𝐶))
4531, 37, 443imtr4g 205 . . . . 5 (𝑓:𝐴1-1-onto𝐵 → (𝑦 ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) → (𝑓𝑦) ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶})))
46 f1ocnv 5534 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴)
47 f1of1 5520 . . . . . . . . . . . 12 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵1-1𝐴)
48 f1f1orn 5532 . . . . . . . . . . . 12 (𝑓:𝐵1-1𝐴𝑓:𝐵1-1-onto→ran 𝑓)
49 f1of1 5520 . . . . . . . . . . . 12 (𝑓:𝐵1-1-onto→ran 𝑓𝑓:𝐵1-1→ran 𝑓)
5047, 48, 493syl 17 . . . . . . . . . . 11 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵1-1→ran 𝑓)
51 vex 2774 . . . . . . . . . . . 12 𝑧 ∈ V
5251f1imaen 6885 . . . . . . . . . . 11 ((𝑓:𝐵1-1→ran 𝑓𝑧𝐵) → (𝑓𝑧) ≈ 𝑧)
5350, 52sylan 283 . . . . . . . . . 10 ((𝑓:𝐵1-1-onto𝐴𝑧𝐵) → (𝑓𝑧) ≈ 𝑧)
54 entr 6875 . . . . . . . . . 10 (((𝑓𝑧) ≈ 𝑧𝑧𝐶) → (𝑓𝑧) ≈ 𝐶)
5553, 54sylan 283 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝑧𝐵) ∧ 𝑧𝐶) → (𝑓𝑧) ≈ 𝐶)
5655expl 378 . . . . . . . 8 (𝑓:𝐵1-1-onto𝐴 → ((𝑧𝐵𝑧𝐶) → (𝑓𝑧) ≈ 𝐶))
57 f1ofo 5528 . . . . . . . . 9 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵onto𝐴)
58 imassrn 5032 . . . . . . . . . 10 (𝑓𝑧) ⊆ ran 𝑓
59 forn 5500 . . . . . . . . . 10 (𝑓:𝐵onto𝐴 → ran 𝑓 = 𝐴)
6058, 59sseqtrid 3242 . . . . . . . . 9 (𝑓:𝐵onto𝐴 → (𝑓𝑧) ⊆ 𝐴)
6157, 60syl 14 . . . . . . . 8 (𝑓:𝐵1-1-onto𝐴 → (𝑓𝑧) ⊆ 𝐴)
6256, 61jctild 316 . . . . . . 7 (𝑓:𝐵1-1-onto𝐴 → ((𝑧𝐵𝑧𝐶) → ((𝑓𝑧) ⊆ 𝐴 ∧ (𝑓𝑧) ≈ 𝐶)))
6346, 62syl 14 . . . . . 6 (𝑓:𝐴1-1-onto𝐵 → ((𝑧𝐵𝑧𝐶) → ((𝑓𝑧) ⊆ 𝐴 ∧ (𝑓𝑧) ≈ 𝐶)))
64 elin 3355 . . . . . . 7 (𝑧 ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) ↔ (𝑧 ∈ 𝒫 𝐵𝑧 ∈ {𝑥𝑥𝐶}))
6551elpw 3621 . . . . . . . 8 (𝑧 ∈ 𝒫 𝐵𝑧𝐵)
66 breq1 4046 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥𝐶𝑧𝐶))
6751, 66elab 2916 . . . . . . . 8 (𝑧 ∈ {𝑥𝑥𝐶} ↔ 𝑧𝐶)
6865, 67anbi12i 460 . . . . . . 7 ((𝑧 ∈ 𝒫 𝐵𝑧 ∈ {𝑥𝑥𝐶}) ↔ (𝑧𝐵𝑧𝐶))
6964, 68bitri 184 . . . . . 6 (𝑧 ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) ↔ (𝑧𝐵𝑧𝐶))
70 elin 3355 . . . . . . 7 ((𝑓𝑧) ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ↔ ((𝑓𝑧) ∈ 𝒫 𝐴 ∧ (𝑓𝑧) ∈ {𝑥𝑥𝐶}))
713cnvex 5220 . . . . . . . . . 10 𝑓 ∈ V
7271imaex 5036 . . . . . . . . 9 (𝑓𝑧) ∈ V
7372elpw 3621 . . . . . . . 8 ((𝑓𝑧) ∈ 𝒫 𝐴 ↔ (𝑓𝑧) ⊆ 𝐴)
74 breq1 4046 . . . . . . . . 9 (𝑥 = (𝑓𝑧) → (𝑥𝐶 ↔ (𝑓𝑧) ≈ 𝐶))
7572, 74elab 2916 . . . . . . . 8 ((𝑓𝑧) ∈ {𝑥𝑥𝐶} ↔ (𝑓𝑧) ≈ 𝐶)
7673, 75anbi12i 460 . . . . . . 7 (((𝑓𝑧) ∈ 𝒫 𝐴 ∧ (𝑓𝑧) ∈ {𝑥𝑥𝐶}) ↔ ((𝑓𝑧) ⊆ 𝐴 ∧ (𝑓𝑧) ≈ 𝐶))
7770, 76bitri 184 . . . . . 6 ((𝑓𝑧) ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ↔ ((𝑓𝑧) ⊆ 𝐴 ∧ (𝑓𝑧) ≈ 𝐶))
7863, 69, 773imtr4g 205 . . . . 5 (𝑓:𝐴1-1-onto𝐵 → (𝑧 ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) → (𝑓𝑧) ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶})))
79 simpl 109 . . . . . . . . . . 11 ((𝑧 ∈ 𝒫 𝐵𝑧 ∈ {𝑥𝑥𝐶}) → 𝑧 ∈ 𝒫 𝐵)
8079elpwid 3626 . . . . . . . . . 10 ((𝑧 ∈ 𝒫 𝐵𝑧 ∈ {𝑥𝑥𝐶}) → 𝑧𝐵)
8164, 80sylbi 121 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) → 𝑧𝐵)
82 imaeq2 5017 . . . . . . . . . . . 12 (𝑦 = (𝑓𝑧) → (𝑓𝑦) = (𝑓 “ (𝑓𝑧)))
83 f1orel 5524 . . . . . . . . . . . . . . . 16 (𝑓:𝐴1-1-onto𝐵 → Rel 𝑓)
84 dfrel2 5132 . . . . . . . . . . . . . . . 16 (Rel 𝑓𝑓 = 𝑓)
8583, 84sylib 122 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1-onto𝐵𝑓 = 𝑓)
8685imaeq1d 5020 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto𝐵 → (𝑓 “ (𝑓𝑧)) = (𝑓 “ (𝑓𝑧)))
8786adantr 276 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝐵𝑧𝐵) → (𝑓 “ (𝑓𝑧)) = (𝑓 “ (𝑓𝑧)))
8846, 47syl 14 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1𝐴)
89 f1imacnv 5538 . . . . . . . . . . . . . 14 ((𝑓:𝐵1-1𝐴𝑧𝐵) → (𝑓 “ (𝑓𝑧)) = 𝑧)
9088, 89sylan 283 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝐵𝑧𝐵) → (𝑓 “ (𝑓𝑧)) = 𝑧)
9187, 90eqtr3d 2239 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝐵𝑧𝐵) → (𝑓 “ (𝑓𝑧)) = 𝑧)
9282, 91sylan9eqr 2259 . . . . . . . . . . 11 (((𝑓:𝐴1-1-onto𝐵𝑧𝐵) ∧ 𝑦 = (𝑓𝑧)) → (𝑓𝑦) = 𝑧)
9392eqcomd 2210 . . . . . . . . . 10 (((𝑓:𝐴1-1-onto𝐵𝑧𝐵) ∧ 𝑦 = (𝑓𝑧)) → 𝑧 = (𝑓𝑦))
9493ex 115 . . . . . . . . 9 ((𝑓:𝐴1-1-onto𝐵𝑧𝐵) → (𝑦 = (𝑓𝑧) → 𝑧 = (𝑓𝑦)))
9581, 94sylan2 286 . . . . . . . 8 ((𝑓:𝐴1-1-onto𝐵𝑧 ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶})) → (𝑦 = (𝑓𝑧) → 𝑧 = (𝑓𝑦)))
9695adantrl 478 . . . . . . 7 ((𝑓:𝐴1-1-onto𝐵 ∧ (𝑦 ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ∧ 𝑧 ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}))) → (𝑦 = (𝑓𝑧) → 𝑧 = (𝑓𝑦)))
97 simpl 109 . . . . . . . . . . 11 ((𝑦 ∈ 𝒫 𝐴𝑦 ∈ {𝑥𝑥𝐶}) → 𝑦 ∈ 𝒫 𝐴)
9897elpwid 3626 . . . . . . . . . 10 ((𝑦 ∈ 𝒫 𝐴𝑦 ∈ {𝑥𝑥𝐶}) → 𝑦𝐴)
9932, 98sylbi 121 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) → 𝑦𝐴)
100 imaeq2 5017 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑦) → (𝑓𝑧) = (𝑓 “ (𝑓𝑦)))
101 f1imacnv 5538 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1𝐵𝑦𝐴) → (𝑓 “ (𝑓𝑦)) = 𝑦)
10217, 101sylan 283 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝐵𝑦𝐴) → (𝑓 “ (𝑓𝑦)) = 𝑦)
103100, 102sylan9eqr 2259 . . . . . . . . . . 11 (((𝑓:𝐴1-1-onto𝐵𝑦𝐴) ∧ 𝑧 = (𝑓𝑦)) → (𝑓𝑧) = 𝑦)
104103eqcomd 2210 . . . . . . . . . 10 (((𝑓:𝐴1-1-onto𝐵𝑦𝐴) ∧ 𝑧 = (𝑓𝑦)) → 𝑦 = (𝑓𝑧))
105104ex 115 . . . . . . . . 9 ((𝑓:𝐴1-1-onto𝐵𝑦𝐴) → (𝑧 = (𝑓𝑦) → 𝑦 = (𝑓𝑧)))
10699, 105sylan2 286 . . . . . . . 8 ((𝑓:𝐴1-1-onto𝐵𝑦 ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶})) → (𝑧 = (𝑓𝑦) → 𝑦 = (𝑓𝑧)))
107106adantrr 479 . . . . . . 7 ((𝑓:𝐴1-1-onto𝐵 ∧ (𝑦 ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ∧ 𝑧 ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}))) → (𝑧 = (𝑓𝑦) → 𝑦 = (𝑓𝑧)))
10896, 107impbid 129 . . . . . 6 ((𝑓:𝐴1-1-onto𝐵 ∧ (𝑦 ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ∧ 𝑧 ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}))) → (𝑦 = (𝑓𝑧) ↔ 𝑧 = (𝑓𝑦)))
109108ex 115 . . . . 5 (𝑓:𝐴1-1-onto𝐵 → ((𝑦 ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ∧ 𝑧 ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶})) → (𝑦 = (𝑓𝑧) ↔ 𝑧 = (𝑓𝑦))))
1108, 16, 45, 78, 109en3d 6859 . . . 4 (𝑓:𝐴1-1-onto𝐵 → (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ≈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}))
111110exlimiv 1620 . . 3 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ≈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}))
1121, 111sylbi 121 . 2 (𝐴𝐵 → (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ≈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}))
113 df-pw 3617 . . . 4 𝒫 𝐴 = {𝑥𝑥𝐴}
114113ineq1i 3369 . . 3 (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) = ({𝑥𝑥𝐴} ∩ {𝑥𝑥𝐶})
115 inab 3440 . . 3 ({𝑥𝑥𝐴} ∩ {𝑥𝑥𝐶}) = {𝑥 ∣ (𝑥𝐴𝑥𝐶)}
116114, 115eqtri 2225 . 2 (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) = {𝑥 ∣ (𝑥𝐴𝑥𝐶)}
117 df-pw 3617 . . . 4 𝒫 𝐵 = {𝑥𝑥𝐵}
118117ineq1i 3369 . . 3 (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) = ({𝑥𝑥𝐵} ∩ {𝑥𝑥𝐶})
119 inab 3440 . . 3 ({𝑥𝑥𝐵} ∩ {𝑥𝑥𝐶}) = {𝑥 ∣ (𝑥𝐵𝑥𝐶)}
120118, 119eqtri 2225 . 2 (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) = {𝑥 ∣ (𝑥𝐵𝑥𝐶)}
121112, 116, 1203brtr3g 4076 1 (𝐴𝐵 → {𝑥 ∣ (𝑥𝐴𝑥𝐶)} ≈ {𝑥 ∣ (𝑥𝐵𝑥𝐶)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wex 1514  wcel 2175  {cab 2190  Vcvv 2771  cin 3164  wss 3165  𝒫 cpw 3615   class class class wbr 4043  ccnv 4673  dom cdm 4674  ran crn 4675  cima 4677  Rel wrel 4679  1-1wf1 5267  ontowfo 5268  1-1-ontowf1o 5269  cen 6824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-er 6619  df-en 6827
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator