ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwsnss GIF version

Theorem pwsnss 3830
Description: The power set of a singleton. (Contributed by Jim Kingdon, 12-Aug-2018.)
Assertion
Ref Expression
pwsnss {∅, {𝐴}} ⊆ 𝒫 {𝐴}

Proof of Theorem pwsnss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sssnr 3780 . . 3 ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) → 𝑥 ⊆ {𝐴})
21ss2abi 3252 . 2 {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} ⊆ {𝑥𝑥 ⊆ {𝐴}}
3 dfpr2 3638 . 2 {∅, {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})}
4 df-pw 3604 . 2 𝒫 {𝐴} = {𝑥𝑥 ⊆ {𝐴}}
52, 3, 43sstr4i 3221 1 {∅, {𝐴}} ⊆ 𝒫 {𝐴}
Colors of variables: wff set class
Syntax hints:  wo 709   = wceq 1364  {cab 2179  wss 3154  c0 3447  𝒫 cpw 3602  {csn 3619  {cpr 3620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626
This theorem is referenced by:  pwpw0ss  3831
  Copyright terms: Public domain W3C validator