| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwsnss | GIF version | ||
| Description: The power set of a singleton. (Contributed by Jim Kingdon, 12-Aug-2018.) |
| Ref | Expression |
|---|---|
| pwsnss | ⊢ {∅, {𝐴}} ⊆ 𝒫 {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssnr 3830 | . . 3 ⊢ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) → 𝑥 ⊆ {𝐴}) | |
| 2 | 1 | ss2abi 3296 | . 2 ⊢ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} ⊆ {𝑥 ∣ 𝑥 ⊆ {𝐴}} |
| 3 | dfpr2 3685 | . 2 ⊢ {∅, {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} | |
| 4 | df-pw 3651 | . 2 ⊢ 𝒫 {𝐴} = {𝑥 ∣ 𝑥 ⊆ {𝐴}} | |
| 5 | 2, 3, 4 | 3sstr4i 3265 | 1 ⊢ {∅, {𝐴}} ⊆ 𝒫 {𝐴} |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 713 = wceq 1395 {cab 2215 ⊆ wss 3197 ∅c0 3491 𝒫 cpw 3649 {csn 3666 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: pwpw0ss 3882 |
| Copyright terms: Public domain | W3C validator |