![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pwsnss | GIF version |
Description: The power set of a singleton. (Contributed by Jim Kingdon, 12-Aug-2018.) |
Ref | Expression |
---|---|
pwsnss | ⊢ {∅, {𝐴}} ⊆ 𝒫 {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssnr 3779 | . . 3 ⊢ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) → 𝑥 ⊆ {𝐴}) | |
2 | 1 | ss2abi 3251 | . 2 ⊢ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} ⊆ {𝑥 ∣ 𝑥 ⊆ {𝐴}} |
3 | dfpr2 3637 | . 2 ⊢ {∅, {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} | |
4 | df-pw 3603 | . 2 ⊢ 𝒫 {𝐴} = {𝑥 ∣ 𝑥 ⊆ {𝐴}} | |
5 | 2, 3, 4 | 3sstr4i 3220 | 1 ⊢ {∅, {𝐴}} ⊆ 𝒫 {𝐴} |
Colors of variables: wff set class |
Syntax hints: ∨ wo 709 = wceq 1364 {cab 2179 ⊆ wss 3153 ∅c0 3446 𝒫 cpw 3601 {csn 3618 {cpr 3619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 |
This theorem is referenced by: pwpw0ss 3830 |
Copyright terms: Public domain | W3C validator |