Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwsnss | GIF version |
Description: The power set of a singleton. (Contributed by Jim Kingdon, 12-Aug-2018.) |
Ref | Expression |
---|---|
pwsnss | ⊢ {∅, {𝐴}} ⊆ 𝒫 {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssnr 3740 | . . 3 ⊢ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) → 𝑥 ⊆ {𝐴}) | |
2 | 1 | ss2abi 3219 | . 2 ⊢ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} ⊆ {𝑥 ∣ 𝑥 ⊆ {𝐴}} |
3 | dfpr2 3602 | . 2 ⊢ {∅, {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} | |
4 | df-pw 3568 | . 2 ⊢ 𝒫 {𝐴} = {𝑥 ∣ 𝑥 ⊆ {𝐴}} | |
5 | 2, 3, 4 | 3sstr4i 3188 | 1 ⊢ {∅, {𝐴}} ⊆ 𝒫 {𝐴} |
Colors of variables: wff set class |
Syntax hints: ∨ wo 703 = wceq 1348 {cab 2156 ⊆ wss 3121 ∅c0 3414 𝒫 cpw 3566 {csn 3583 {cpr 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 |
This theorem is referenced by: pwpw0ss 3791 |
Copyright terms: Public domain | W3C validator |