| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwsnss | GIF version | ||
| Description: The power set of a singleton. (Contributed by Jim Kingdon, 12-Aug-2018.) |
| Ref | Expression |
|---|---|
| pwsnss | ⊢ {∅, {𝐴}} ⊆ 𝒫 {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssnr 3796 | . . 3 ⊢ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) → 𝑥 ⊆ {𝐴}) | |
| 2 | 1 | ss2abi 3266 | . 2 ⊢ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} ⊆ {𝑥 ∣ 𝑥 ⊆ {𝐴}} |
| 3 | dfpr2 3653 | . 2 ⊢ {∅, {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} | |
| 4 | df-pw 3619 | . 2 ⊢ 𝒫 {𝐴} = {𝑥 ∣ 𝑥 ⊆ {𝐴}} | |
| 5 | 2, 3, 4 | 3sstr4i 3235 | 1 ⊢ {∅, {𝐴}} ⊆ 𝒫 {𝐴} |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 710 = wceq 1373 {cab 2192 ⊆ wss 3167 ∅c0 3461 𝒫 cpw 3617 {csn 3634 {cpr 3635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 |
| This theorem is referenced by: pwpw0ss 3847 |
| Copyright terms: Public domain | W3C validator |