| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pwsnss | GIF version | ||
| Description: The power set of a singleton. (Contributed by Jim Kingdon, 12-Aug-2018.) | 
| Ref | Expression | 
|---|---|
| pwsnss | ⊢ {∅, {𝐴}} ⊆ 𝒫 {𝐴} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sssnr 3783 | . . 3 ⊢ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) → 𝑥 ⊆ {𝐴}) | |
| 2 | 1 | ss2abi 3255 | . 2 ⊢ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} ⊆ {𝑥 ∣ 𝑥 ⊆ {𝐴}} | 
| 3 | dfpr2 3641 | . 2 ⊢ {∅, {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} | |
| 4 | df-pw 3607 | . 2 ⊢ 𝒫 {𝐴} = {𝑥 ∣ 𝑥 ⊆ {𝐴}} | |
| 5 | 2, 3, 4 | 3sstr4i 3224 | 1 ⊢ {∅, {𝐴}} ⊆ 𝒫 {𝐴} | 
| Colors of variables: wff set class | 
| Syntax hints: ∨ wo 709 = wceq 1364 {cab 2182 ⊆ wss 3157 ∅c0 3450 𝒫 cpw 3605 {csn 3622 {cpr 3623 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 | 
| This theorem is referenced by: pwpw0ss 3834 | 
| Copyright terms: Public domain | W3C validator |