Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwsnss | GIF version |
Description: The power set of a singleton. (Contributed by Jim Kingdon, 12-Aug-2018.) |
Ref | Expression |
---|---|
pwsnss | ⊢ {∅, {𝐴}} ⊆ 𝒫 {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssnr 3733 | . . 3 ⊢ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) → 𝑥 ⊆ {𝐴}) | |
2 | 1 | ss2abi 3214 | . 2 ⊢ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} ⊆ {𝑥 ∣ 𝑥 ⊆ {𝐴}} |
3 | dfpr2 3595 | . 2 ⊢ {∅, {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})} | |
4 | df-pw 3561 | . 2 ⊢ 𝒫 {𝐴} = {𝑥 ∣ 𝑥 ⊆ {𝐴}} | |
5 | 2, 3, 4 | 3sstr4i 3183 | 1 ⊢ {∅, {𝐴}} ⊆ 𝒫 {𝐴} |
Colors of variables: wff set class |
Syntax hints: ∨ wo 698 = wceq 1343 {cab 2151 ⊆ wss 3116 ∅c0 3409 𝒫 cpw 3559 {csn 3576 {cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 |
This theorem is referenced by: pwpw0ss 3784 |
Copyright terms: Public domain | W3C validator |