ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgvalex GIF version

Theorem tgvalex 13291
Description: The topology generated by a basis is a set. (Contributed by Jim Kingdon, 4-Mar-2023.)
Assertion
Ref Expression
tgvalex (𝐵𝑉 → (topGen‘𝐵) ∈ V)

Proof of Theorem tgvalex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tgval 13290 . 2 (𝐵𝑉 → (topGen‘𝐵) = {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)})
2 inss1 3424 . . . . . . 7 (𝐵 ∩ 𝒫 𝑦) ⊆ 𝐵
32unissi 3910 . . . . . 6 (𝐵 ∩ 𝒫 𝑦) ⊆ 𝐵
4 sstr 3232 . . . . . 6 ((𝑦 (𝐵 ∩ 𝒫 𝑦) ∧ (𝐵 ∩ 𝒫 𝑦) ⊆ 𝐵) → 𝑦 𝐵)
53, 4mpan2 425 . . . . 5 (𝑦 (𝐵 ∩ 𝒫 𝑦) → 𝑦 𝐵)
65ss2abi 3296 . . . 4 {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ⊆ {𝑦𝑦 𝐵}
7 df-pw 3651 . . . 4 𝒫 𝐵 = {𝑦𝑦 𝐵}
86, 7sseqtrri 3259 . . 3 {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ⊆ 𝒫 𝐵
9 uniexg 4529 . . . 4 (𝐵𝑉 𝐵 ∈ V)
109pwexd 4264 . . 3 (𝐵𝑉 → 𝒫 𝐵 ∈ V)
11 ssexg 4222 . . 3 (({𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ∈ V) → {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ∈ V)
128, 10, 11sylancr 414 . 2 (𝐵𝑉 → {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ∈ V)
131, 12eqeltrd 2306 1 (𝐵𝑉 → (topGen‘𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  {cab 2215  Vcvv 2799  cin 3196  wss 3197  𝒫 cpw 3649   cuni 3887  cfv 5317  topGenctg 13282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-topgen 13288
This theorem is referenced by:  ptex  13292  mopnset  14510  tgcl  14732  tgidm  14742  tgss3  14746  2basgeng  14750  tgrest  14837  txvalex  14922  txval  14923  txbasval  14935
  Copyright terms: Public domain W3C validator