Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tgvalex | GIF version |
Description: The topology generated by a basis is a set. (Contributed by Jim Kingdon, 4-Mar-2023.) |
Ref | Expression |
---|---|
tgvalex | ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgval 12689 | . 2 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)}) | |
2 | inss1 3342 | . . . . . . 7 ⊢ (𝐵 ∩ 𝒫 𝑦) ⊆ 𝐵 | |
3 | 2 | unissi 3812 | . . . . . 6 ⊢ ∪ (𝐵 ∩ 𝒫 𝑦) ⊆ ∪ 𝐵 |
4 | sstr 3150 | . . . . . 6 ⊢ ((𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦) ∧ ∪ (𝐵 ∩ 𝒫 𝑦) ⊆ ∪ 𝐵) → 𝑦 ⊆ ∪ 𝐵) | |
5 | 3, 4 | mpan2 422 | . . . . 5 ⊢ (𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦) → 𝑦 ⊆ ∪ 𝐵) |
6 | 5 | ss2abi 3214 | . . . 4 ⊢ {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ⊆ {𝑦 ∣ 𝑦 ⊆ ∪ 𝐵} |
7 | df-pw 3561 | . . . 4 ⊢ 𝒫 ∪ 𝐵 = {𝑦 ∣ 𝑦 ⊆ ∪ 𝐵} | |
8 | 6, 7 | sseqtrri 3177 | . . 3 ⊢ {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ⊆ 𝒫 ∪ 𝐵 |
9 | uniexg 4417 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V) | |
10 | 9 | pwexd 4160 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝒫 ∪ 𝐵 ∈ V) |
11 | ssexg 4121 | . . 3 ⊢ (({𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ⊆ 𝒫 ∪ 𝐵 ∧ 𝒫 ∪ 𝐵 ∈ V) → {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ∈ V) | |
12 | 8, 10, 11 | sylancr 411 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ∈ V) |
13 | 1, 12 | eqeltrd 2243 | 1 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 {cab 2151 Vcvv 2726 ∩ cin 3115 ⊆ wss 3116 𝒫 cpw 3559 ∪ cuni 3789 ‘cfv 5188 topGenctg 12571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-topgen 12577 |
This theorem is referenced by: tgcl 12704 tgidm 12714 tgss3 12718 2basgeng 12722 tgrest 12809 txvalex 12894 txval 12895 txbasval 12907 |
Copyright terms: Public domain | W3C validator |