| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tgvalex | GIF version | ||
| Description: The topology generated by a basis is a set. (Contributed by Jim Kingdon, 4-Mar-2023.) |
| Ref | Expression |
|---|---|
| tgvalex | ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgval 12964 | . 2 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)}) | |
| 2 | inss1 3384 | . . . . . . 7 ⊢ (𝐵 ∩ 𝒫 𝑦) ⊆ 𝐵 | |
| 3 | 2 | unissi 3863 | . . . . . 6 ⊢ ∪ (𝐵 ∩ 𝒫 𝑦) ⊆ ∪ 𝐵 |
| 4 | sstr 3192 | . . . . . 6 ⊢ ((𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦) ∧ ∪ (𝐵 ∩ 𝒫 𝑦) ⊆ ∪ 𝐵) → 𝑦 ⊆ ∪ 𝐵) | |
| 5 | 3, 4 | mpan2 425 | . . . . 5 ⊢ (𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦) → 𝑦 ⊆ ∪ 𝐵) |
| 6 | 5 | ss2abi 3256 | . . . 4 ⊢ {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ⊆ {𝑦 ∣ 𝑦 ⊆ ∪ 𝐵} |
| 7 | df-pw 3608 | . . . 4 ⊢ 𝒫 ∪ 𝐵 = {𝑦 ∣ 𝑦 ⊆ ∪ 𝐵} | |
| 8 | 6, 7 | sseqtrri 3219 | . . 3 ⊢ {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ⊆ 𝒫 ∪ 𝐵 |
| 9 | uniexg 4475 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V) | |
| 10 | 9 | pwexd 4215 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝒫 ∪ 𝐵 ∈ V) |
| 11 | ssexg 4173 | . . 3 ⊢ (({𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ⊆ 𝒫 ∪ 𝐵 ∧ 𝒫 ∪ 𝐵 ∈ V) → {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ∈ V) | |
| 12 | 8, 10, 11 | sylancr 414 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ∈ V) |
| 13 | 1, 12 | eqeltrd 2273 | 1 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 {cab 2182 Vcvv 2763 ∩ cin 3156 ⊆ wss 3157 𝒫 cpw 3606 ∪ cuni 3840 ‘cfv 5259 topGenctg 12956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-topgen 12962 |
| This theorem is referenced by: ptex 12966 mopnset 14184 tgcl 14384 tgidm 14394 tgss3 14398 2basgeng 14402 tgrest 14489 txvalex 14574 txval 14575 txbasval 14587 |
| Copyright terms: Public domain | W3C validator |