ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgvalex GIF version

Theorem tgvalex 13421
Description: The topology generated by a basis is a set. (Contributed by Jim Kingdon, 4-Mar-2023.)
Assertion
Ref Expression
tgvalex (𝐵𝑉 → (topGen‘𝐵) ∈ V)

Proof of Theorem tgvalex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tgval 13420 . 2 (𝐵𝑉 → (topGen‘𝐵) = {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)})
2 inss1 3355 . . . . . . 7 (𝐵 ∩ 𝒫 𝑦) ⊆ 𝐵
32unissi 3832 . . . . . 6 (𝐵 ∩ 𝒫 𝑦) ⊆ 𝐵
4 sstr 3163 . . . . . 6 ((𝑦 (𝐵 ∩ 𝒫 𝑦) ∧ (𝐵 ∩ 𝒫 𝑦) ⊆ 𝐵) → 𝑦 𝐵)
53, 4mpan2 425 . . . . 5 (𝑦 (𝐵 ∩ 𝒫 𝑦) → 𝑦 𝐵)
65ss2abi 3227 . . . 4 {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ⊆ {𝑦𝑦 𝐵}
7 df-pw 3577 . . . 4 𝒫 𝐵 = {𝑦𝑦 𝐵}
86, 7sseqtrri 3190 . . 3 {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ⊆ 𝒫 𝐵
9 uniexg 4438 . . . 4 (𝐵𝑉 𝐵 ∈ V)
109pwexd 4180 . . 3 (𝐵𝑉 → 𝒫 𝐵 ∈ V)
11 ssexg 4141 . . 3 (({𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ∈ V) → {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ∈ V)
128, 10, 11sylancr 414 . 2 (𝐵𝑉 → {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ∈ V)
131, 12eqeltrd 2254 1 (𝐵𝑉 → (topGen‘𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  {cab 2163  Vcvv 2737  cin 3128  wss 3129  𝒫 cpw 3575   cuni 3809  cfv 5215  topGenctg 12691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-iota 5177  df-fun 5217  df-fv 5223  df-topgen 12697
This theorem is referenced by:  tgcl  13435  tgidm  13445  tgss3  13449  2basgeng  13453  tgrest  13540  txvalex  13625  txval  13626  txbasval  13638
  Copyright terms: Public domain W3C validator