ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgvalex GIF version

Theorem tgvalex 12965
Description: The topology generated by a basis is a set. (Contributed by Jim Kingdon, 4-Mar-2023.)
Assertion
Ref Expression
tgvalex (𝐵𝑉 → (topGen‘𝐵) ∈ V)

Proof of Theorem tgvalex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tgval 12964 . 2 (𝐵𝑉 → (topGen‘𝐵) = {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)})
2 inss1 3384 . . . . . . 7 (𝐵 ∩ 𝒫 𝑦) ⊆ 𝐵
32unissi 3863 . . . . . 6 (𝐵 ∩ 𝒫 𝑦) ⊆ 𝐵
4 sstr 3192 . . . . . 6 ((𝑦 (𝐵 ∩ 𝒫 𝑦) ∧ (𝐵 ∩ 𝒫 𝑦) ⊆ 𝐵) → 𝑦 𝐵)
53, 4mpan2 425 . . . . 5 (𝑦 (𝐵 ∩ 𝒫 𝑦) → 𝑦 𝐵)
65ss2abi 3256 . . . 4 {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ⊆ {𝑦𝑦 𝐵}
7 df-pw 3608 . . . 4 𝒫 𝐵 = {𝑦𝑦 𝐵}
86, 7sseqtrri 3219 . . 3 {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ⊆ 𝒫 𝐵
9 uniexg 4475 . . . 4 (𝐵𝑉 𝐵 ∈ V)
109pwexd 4215 . . 3 (𝐵𝑉 → 𝒫 𝐵 ∈ V)
11 ssexg 4173 . . 3 (({𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ∈ V) → {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ∈ V)
128, 10, 11sylancr 414 . 2 (𝐵𝑉 → {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ∈ V)
131, 12eqeltrd 2273 1 (𝐵𝑉 → (topGen‘𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  {cab 2182  Vcvv 2763  cin 3156  wss 3157  𝒫 cpw 3606   cuni 3840  cfv 5259  topGenctg 12956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-topgen 12962
This theorem is referenced by:  ptex  12966  mopnset  14184  tgcl  14384  tgidm  14394  tgss3  14398  2basgeng  14402  tgrest  14489  txvalex  14574  txval  14575  txbasval  14587
  Copyright terms: Public domain W3C validator