ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgvalex GIF version

Theorem tgvalex 13066
Description: The topology generated by a basis is a set. (Contributed by Jim Kingdon, 4-Mar-2023.)
Assertion
Ref Expression
tgvalex (𝐵𝑉 → (topGen‘𝐵) ∈ V)

Proof of Theorem tgvalex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tgval 13065 . 2 (𝐵𝑉 → (topGen‘𝐵) = {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)})
2 inss1 3392 . . . . . . 7 (𝐵 ∩ 𝒫 𝑦) ⊆ 𝐵
32unissi 3872 . . . . . 6 (𝐵 ∩ 𝒫 𝑦) ⊆ 𝐵
4 sstr 3200 . . . . . 6 ((𝑦 (𝐵 ∩ 𝒫 𝑦) ∧ (𝐵 ∩ 𝒫 𝑦) ⊆ 𝐵) → 𝑦 𝐵)
53, 4mpan2 425 . . . . 5 (𝑦 (𝐵 ∩ 𝒫 𝑦) → 𝑦 𝐵)
65ss2abi 3264 . . . 4 {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ⊆ {𝑦𝑦 𝐵}
7 df-pw 3617 . . . 4 𝒫 𝐵 = {𝑦𝑦 𝐵}
86, 7sseqtrri 3227 . . 3 {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ⊆ 𝒫 𝐵
9 uniexg 4485 . . . 4 (𝐵𝑉 𝐵 ∈ V)
109pwexd 4224 . . 3 (𝐵𝑉 → 𝒫 𝐵 ∈ V)
11 ssexg 4182 . . 3 (({𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ∈ V) → {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ∈ V)
128, 10, 11sylancr 414 . 2 (𝐵𝑉 → {𝑦𝑦 (𝐵 ∩ 𝒫 𝑦)} ∈ V)
131, 12eqeltrd 2281 1 (𝐵𝑉 → (topGen‘𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  {cab 2190  Vcvv 2771  cin 3164  wss 3165  𝒫 cpw 3615   cuni 3849  cfv 5270  topGenctg 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-topgen 13063
This theorem is referenced by:  ptex  13067  mopnset  14285  tgcl  14507  tgidm  14517  tgss3  14521  2basgeng  14525  tgrest  14612  txvalex  14697  txval  14698  txbasval  14710
  Copyright terms: Public domain W3C validator