| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tgvalex | GIF version | ||
| Description: The topology generated by a basis is a set. (Contributed by Jim Kingdon, 4-Mar-2023.) |
| Ref | Expression |
|---|---|
| tgvalex | ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgval 13290 | . 2 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)}) | |
| 2 | inss1 3424 | . . . . . . 7 ⊢ (𝐵 ∩ 𝒫 𝑦) ⊆ 𝐵 | |
| 3 | 2 | unissi 3910 | . . . . . 6 ⊢ ∪ (𝐵 ∩ 𝒫 𝑦) ⊆ ∪ 𝐵 |
| 4 | sstr 3232 | . . . . . 6 ⊢ ((𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦) ∧ ∪ (𝐵 ∩ 𝒫 𝑦) ⊆ ∪ 𝐵) → 𝑦 ⊆ ∪ 𝐵) | |
| 5 | 3, 4 | mpan2 425 | . . . . 5 ⊢ (𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦) → 𝑦 ⊆ ∪ 𝐵) |
| 6 | 5 | ss2abi 3296 | . . . 4 ⊢ {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ⊆ {𝑦 ∣ 𝑦 ⊆ ∪ 𝐵} |
| 7 | df-pw 3651 | . . . 4 ⊢ 𝒫 ∪ 𝐵 = {𝑦 ∣ 𝑦 ⊆ ∪ 𝐵} | |
| 8 | 6, 7 | sseqtrri 3259 | . . 3 ⊢ {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ⊆ 𝒫 ∪ 𝐵 |
| 9 | uniexg 4529 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V) | |
| 10 | 9 | pwexd 4264 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝒫 ∪ 𝐵 ∈ V) |
| 11 | ssexg 4222 | . . 3 ⊢ (({𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ⊆ 𝒫 ∪ 𝐵 ∧ 𝒫 ∪ 𝐵 ∈ V) → {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ∈ V) | |
| 12 | 8, 10, 11 | sylancr 414 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ∈ V) |
| 13 | 1, 12 | eqeltrd 2306 | 1 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 {cab 2215 Vcvv 2799 ∩ cin 3196 ⊆ wss 3197 𝒫 cpw 3649 ∪ cuni 3887 ‘cfv 5317 topGenctg 13282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-topgen 13288 |
| This theorem is referenced by: ptex 13292 mopnset 14510 tgcl 14732 tgidm 14742 tgss3 14746 2basgeng 14750 tgrest 14837 txvalex 14922 txval 14923 txbasval 14935 |
| Copyright terms: Public domain | W3C validator |