| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tgvalex | GIF version | ||
| Description: The topology generated by a basis is a set. (Contributed by Jim Kingdon, 4-Mar-2023.) |
| Ref | Expression |
|---|---|
| tgvalex | ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgval 13094 | . 2 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)}) | |
| 2 | inss1 3393 | . . . . . . 7 ⊢ (𝐵 ∩ 𝒫 𝑦) ⊆ 𝐵 | |
| 3 | 2 | unissi 3873 | . . . . . 6 ⊢ ∪ (𝐵 ∩ 𝒫 𝑦) ⊆ ∪ 𝐵 |
| 4 | sstr 3201 | . . . . . 6 ⊢ ((𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦) ∧ ∪ (𝐵 ∩ 𝒫 𝑦) ⊆ ∪ 𝐵) → 𝑦 ⊆ ∪ 𝐵) | |
| 5 | 3, 4 | mpan2 425 | . . . . 5 ⊢ (𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦) → 𝑦 ⊆ ∪ 𝐵) |
| 6 | 5 | ss2abi 3265 | . . . 4 ⊢ {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ⊆ {𝑦 ∣ 𝑦 ⊆ ∪ 𝐵} |
| 7 | df-pw 3618 | . . . 4 ⊢ 𝒫 ∪ 𝐵 = {𝑦 ∣ 𝑦 ⊆ ∪ 𝐵} | |
| 8 | 6, 7 | sseqtrri 3228 | . . 3 ⊢ {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ⊆ 𝒫 ∪ 𝐵 |
| 9 | uniexg 4486 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V) | |
| 10 | 9 | pwexd 4225 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝒫 ∪ 𝐵 ∈ V) |
| 11 | ssexg 4183 | . . 3 ⊢ (({𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ⊆ 𝒫 ∪ 𝐵 ∧ 𝒫 ∪ 𝐵 ∈ V) → {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ∈ V) | |
| 12 | 8, 10, 11 | sylancr 414 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑦 ∣ 𝑦 ⊆ ∪ (𝐵 ∩ 𝒫 𝑦)} ∈ V) |
| 13 | 1, 12 | eqeltrd 2282 | 1 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 {cab 2191 Vcvv 2772 ∩ cin 3165 ⊆ wss 3166 𝒫 cpw 3616 ∪ cuni 3850 ‘cfv 5271 topGenctg 13086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-topgen 13092 |
| This theorem is referenced by: ptex 13096 mopnset 14314 tgcl 14536 tgidm 14546 tgss3 14550 2basgeng 14554 tgrest 14641 txvalex 14726 txval 14727 txbasval 14739 |
| Copyright terms: Public domain | W3C validator |