![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abssexg | GIF version |
Description: Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
abssexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 4180 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
2 | df-pw 3577 | . . . 4 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
3 | 2 | eleq1i 2243 | . . 3 ⊢ (𝒫 𝐴 ∈ V ↔ {𝑥 ∣ 𝑥 ⊆ 𝐴} ∈ V) |
4 | simpl 109 | . . . . 5 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝜑) → 𝑥 ⊆ 𝐴) | |
5 | 4 | ss2abi 3227 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝑥 ⊆ 𝐴} |
6 | ssexg 4142 | . . . 4 ⊢ (({𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝑥 ⊆ 𝐴} ∧ {𝑥 ∣ 𝑥 ⊆ 𝐴} ∈ V) → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) | |
7 | 5, 6 | mpan 424 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ⊆ 𝐴} ∈ V → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) |
8 | 3, 7 | sylbi 121 | . 2 ⊢ (𝒫 𝐴 ∈ V → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) |
9 | 1, 8 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 {cab 2163 Vcvv 2737 ⊆ wss 3129 𝒫 cpw 3575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-in 3135 df-ss 3142 df-pw 3577 |
This theorem is referenced by: pmex 6652 tgval 12705 |
Copyright terms: Public domain | W3C validator |