Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abssexg | GIF version |
Description: Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
abssexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 4140 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
2 | df-pw 3545 | . . . 4 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
3 | 2 | eleq1i 2223 | . . 3 ⊢ (𝒫 𝐴 ∈ V ↔ {𝑥 ∣ 𝑥 ⊆ 𝐴} ∈ V) |
4 | simpl 108 | . . . . 5 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝜑) → 𝑥 ⊆ 𝐴) | |
5 | 4 | ss2abi 3200 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝑥 ⊆ 𝐴} |
6 | ssexg 4103 | . . . 4 ⊢ (({𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝑥 ⊆ 𝐴} ∧ {𝑥 ∣ 𝑥 ⊆ 𝐴} ∈ V) → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) | |
7 | 5, 6 | mpan 421 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ⊆ 𝐴} ∈ V → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) |
8 | 3, 7 | sylbi 120 | . 2 ⊢ (𝒫 𝐴 ∈ V → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) |
9 | 1, 8 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2128 {cab 2143 Vcvv 2712 ⊆ wss 3102 𝒫 cpw 3543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-in 3108 df-ss 3115 df-pw 3545 |
This theorem is referenced by: pmex 6591 tgval 12409 |
Copyright terms: Public domain | W3C validator |