ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotass GIF version

Theorem iotass 5258
Description: Value of iota based on a proposition which holds only for values which are subsets of a given class. (Contributed by Mario Carneiro and Jim Kingdon, 21-Dec-2018.)
Assertion
Ref Expression
iotass (∀𝑥(𝜑𝑥𝐴) → (℩𝑥𝜑) ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem iotass
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iota 5241 . 2 (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
2 unieq 3865 . . . . . . . 8 ({𝑥𝜑} = {𝑦} → {𝑥𝜑} = {𝑦})
3 vex 2776 . . . . . . . . 9 𝑦 ∈ V
43unisn 3872 . . . . . . . 8 {𝑦} = 𝑦
52, 4eqtrdi 2255 . . . . . . 7 ({𝑥𝜑} = {𝑦} → {𝑥𝜑} = 𝑦)
6 df-pw 3623 . . . . . . . . . . 11 𝒫 𝐴 = {𝑥𝑥𝐴}
76sseq2i 3224 . . . . . . . . . 10 ({𝑥𝜑} ⊆ 𝒫 𝐴 ↔ {𝑥𝜑} ⊆ {𝑥𝑥𝐴})
8 ss2ab 3265 . . . . . . . . . 10 ({𝑥𝜑} ⊆ {𝑥𝑥𝐴} ↔ ∀𝑥(𝜑𝑥𝐴))
97, 8bitri 184 . . . . . . . . 9 ({𝑥𝜑} ⊆ 𝒫 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
109biimpri 133 . . . . . . . 8 (∀𝑥(𝜑𝑥𝐴) → {𝑥𝜑} ⊆ 𝒫 𝐴)
11 sspwuni 4018 . . . . . . . 8 ({𝑥𝜑} ⊆ 𝒫 𝐴 {𝑥𝜑} ⊆ 𝐴)
1210, 11sylib 122 . . . . . . 7 (∀𝑥(𝜑𝑥𝐴) → {𝑥𝜑} ⊆ 𝐴)
13 sseq1 3220 . . . . . . . 8 ( {𝑥𝜑} = 𝑦 → ( {𝑥𝜑} ⊆ 𝐴𝑦𝐴))
1413biimpa 296 . . . . . . 7 (( {𝑥𝜑} = 𝑦 {𝑥𝜑} ⊆ 𝐴) → 𝑦𝐴)
155, 12, 14syl2anr 290 . . . . . 6 ((∀𝑥(𝜑𝑥𝐴) ∧ {𝑥𝜑} = {𝑦}) → 𝑦𝐴)
1615ex 115 . . . . 5 (∀𝑥(𝜑𝑥𝐴) → ({𝑥𝜑} = {𝑦} → 𝑦𝐴))
1716ss2abdv 3270 . . . 4 (∀𝑥(𝜑𝑥𝐴) → {𝑦 ∣ {𝑥𝜑} = {𝑦}} ⊆ {𝑦𝑦𝐴})
18 df-pw 3623 . . . 4 𝒫 𝐴 = {𝑦𝑦𝐴}
1917, 18sseqtrrdi 3246 . . 3 (∀𝑥(𝜑𝑥𝐴) → {𝑦 ∣ {𝑥𝜑} = {𝑦}} ⊆ 𝒫 𝐴)
20 sspwuni 4018 . . 3 ({𝑦 ∣ {𝑥𝜑} = {𝑦}} ⊆ 𝒫 𝐴 {𝑦 ∣ {𝑥𝜑} = {𝑦}} ⊆ 𝐴)
2119, 20sylib 122 . 2 (∀𝑥(𝜑𝑥𝐴) → {𝑦 ∣ {𝑥𝜑} = {𝑦}} ⊆ 𝐴)
221, 21eqsstrid 3243 1 (∀𝑥(𝜑𝑥𝐴) → (℩𝑥𝜑) ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371   = wceq 1373  {cab 2192  wss 3170  𝒫 cpw 3621  {csn 3638   cuni 3856  cio 5239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3857  df-iota 5241
This theorem is referenced by:  iotaexab  5259  fvss  5603  riotaexg  5916
  Copyright terms: Public domain W3C validator