| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-iota 5219 | 
. 2
⊢
(℩𝑥𝜑) = ∪
{𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | 
| 2 |   | unieq 3848 | 
. . . . . . . 8
⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ∪ {𝑥 ∣ 𝜑} = ∪ {𝑦}) | 
| 3 |   | vex 2766 | 
. . . . . . . . 9
⊢ 𝑦 ∈ V | 
| 4 | 3 | unisn 3855 | 
. . . . . . . 8
⊢ ∪ {𝑦}
= 𝑦 | 
| 5 | 2, 4 | eqtrdi 2245 | 
. . . . . . 7
⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ∪ {𝑥 ∣ 𝜑} = 𝑦) | 
| 6 |   | df-pw 3607 | 
. . . . . . . . . . 11
⊢ 𝒫
𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | 
| 7 | 6 | sseq2i 3210 | 
. . . . . . . . . 10
⊢ ({𝑥 ∣ 𝜑} ⊆ 𝒫 𝐴 ↔ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ⊆ 𝐴}) | 
| 8 |   | ss2ab 3251 | 
. . . . . . . . . 10
⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ⊆ 𝐴} ↔ ∀𝑥(𝜑 → 𝑥 ⊆ 𝐴)) | 
| 9 | 7, 8 | bitri 184 | 
. . . . . . . . 9
⊢ ({𝑥 ∣ 𝜑} ⊆ 𝒫 𝐴 ↔ ∀𝑥(𝜑 → 𝑥 ⊆ 𝐴)) | 
| 10 | 9 | biimpri 133 | 
. . . . . . . 8
⊢
(∀𝑥(𝜑 → 𝑥 ⊆ 𝐴) → {𝑥 ∣ 𝜑} ⊆ 𝒫 𝐴) | 
| 11 |   | sspwuni 4001 | 
. . . . . . . 8
⊢ ({𝑥 ∣ 𝜑} ⊆ 𝒫 𝐴 ↔ ∪ {𝑥 ∣ 𝜑} ⊆ 𝐴) | 
| 12 | 10, 11 | sylib 122 | 
. . . . . . 7
⊢
(∀𝑥(𝜑 → 𝑥 ⊆ 𝐴) → ∪ {𝑥 ∣ 𝜑} ⊆ 𝐴) | 
| 13 |   | sseq1 3206 | 
. . . . . . . 8
⊢ (∪ {𝑥
∣ 𝜑} = 𝑦 → (∪ {𝑥
∣ 𝜑} ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | 
| 14 | 13 | biimpa 296 | 
. . . . . . 7
⊢ ((∪ {𝑥
∣ 𝜑} = 𝑦 ∧ ∪ {𝑥
∣ 𝜑} ⊆ 𝐴) → 𝑦 ⊆ 𝐴) | 
| 15 | 5, 12, 14 | syl2anr 290 | 
. . . . . 6
⊢
((∀𝑥(𝜑 → 𝑥 ⊆ 𝐴) ∧ {𝑥 ∣ 𝜑} = {𝑦}) → 𝑦 ⊆ 𝐴) | 
| 16 | 15 | ex 115 | 
. . . . 5
⊢
(∀𝑥(𝜑 → 𝑥 ⊆ 𝐴) → ({𝑥 ∣ 𝜑} = {𝑦} → 𝑦 ⊆ 𝐴)) | 
| 17 | 16 | ss2abdv 3256 | 
. . . 4
⊢
(∀𝑥(𝜑 → 𝑥 ⊆ 𝐴) → {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ⊆ {𝑦 ∣ 𝑦 ⊆ 𝐴}) | 
| 18 |   | df-pw 3607 | 
. . . 4
⊢ 𝒫
𝐴 = {𝑦 ∣ 𝑦 ⊆ 𝐴} | 
| 19 | 17, 18 | sseqtrrdi 3232 | 
. . 3
⊢
(∀𝑥(𝜑 → 𝑥 ⊆ 𝐴) → {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ⊆ 𝒫 𝐴) | 
| 20 |   | sspwuni 4001 | 
. . 3
⊢ ({𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ⊆ 𝒫 𝐴 ↔ ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ⊆ 𝐴) | 
| 21 | 19, 20 | sylib 122 | 
. 2
⊢
(∀𝑥(𝜑 → 𝑥 ⊆ 𝐴) → ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ⊆ 𝐴) | 
| 22 | 1, 21 | eqsstrid 3229 | 
1
⊢
(∀𝑥(𝜑 → 𝑥 ⊆ 𝐴) → (℩𝑥𝜑) ⊆ 𝐴) |