| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbdmg | GIF version | ||
| Description: Distribute proper substitution through the domain of a class. (Contributed by Jim Kingdon, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| csbdmg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbabg 3156 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵}) | |
| 2 | sbcex2 3053 | . . . . 5 ⊢ ([𝐴 / 𝑥]∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]〈𝑦, 𝑤〉 ∈ 𝐵) | |
| 3 | sbcel2g 3115 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]〈𝑦, 𝑤〉 ∈ 𝐵 ↔ 〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵)) | |
| 4 | 3 | exbidv 1849 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (∃𝑤[𝐴 / 𝑥]〈𝑦, 𝑤〉 ∈ 𝐵 ↔ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵)) |
| 5 | 2, 4 | bitrid 192 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵 ↔ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵)) |
| 6 | 5 | abbidv 2324 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵}) |
| 7 | 1, 6 | eqtrd 2239 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵}) |
| 8 | dfdm3 4869 | . . 3 ⊢ dom 𝐵 = {𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} | |
| 9 | 8 | csbeq2i 3121 | . 2 ⊢ ⦋𝐴 / 𝑥⦌dom 𝐵 = ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} |
| 10 | dfdm3 4869 | . 2 ⊢ dom ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} | |
| 11 | 7, 9, 10 | 3eqtr4g 2264 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∃wex 1516 ∈ wcel 2177 {cab 2192 [wsbc 2999 ⦋csb 3094 〈cop 3637 dom cdm 4679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-sbc 3000 df-csb 3095 df-br 4048 df-dm 4689 |
| This theorem is referenced by: sbcfng 5429 |
| Copyright terms: Public domain | W3C validator |