Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbdmg | GIF version |
Description: Distribute proper substitution through the domain of a class. (Contributed by Jim Kingdon, 8-Dec-2018.) |
Ref | Expression |
---|---|
csbdmg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbabg 3106 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵}) | |
2 | sbcex2 3004 | . . . . 5 ⊢ ([𝐴 / 𝑥]∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]〈𝑦, 𝑤〉 ∈ 𝐵) | |
3 | sbcel2g 3066 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]〈𝑦, 𝑤〉 ∈ 𝐵 ↔ 〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵)) | |
4 | 3 | exbidv 1813 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (∃𝑤[𝐴 / 𝑥]〈𝑦, 𝑤〉 ∈ 𝐵 ↔ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵)) |
5 | 2, 4 | syl5bb 191 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵 ↔ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵)) |
6 | 5 | abbidv 2284 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵}) |
7 | 1, 6 | eqtrd 2198 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵}) |
8 | dfdm3 4791 | . . 3 ⊢ dom 𝐵 = {𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} | |
9 | 8 | csbeq2i 3072 | . 2 ⊢ ⦋𝐴 / 𝑥⦌dom 𝐵 = ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} |
10 | dfdm3 4791 | . 2 ⊢ dom ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} | |
11 | 7, 9, 10 | 3eqtr4g 2224 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∃wex 1480 ∈ wcel 2136 {cab 2151 [wsbc 2951 ⦋csb 3045 〈cop 3579 dom cdm 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 df-csb 3046 df-br 3983 df-dm 4614 |
This theorem is referenced by: sbcfng 5335 |
Copyright terms: Public domain | W3C validator |