ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbdmg GIF version

Theorem csbdmg 4917
Description: Distribute proper substitution through the domain of a class. (Contributed by Jim Kingdon, 8-Dec-2018.)
Assertion
Ref Expression
csbdmg (𝐴𝑉𝐴 / 𝑥dom 𝐵 = dom 𝐴 / 𝑥𝐵)

Proof of Theorem csbdmg
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 3186 . . 3 (𝐴𝑉𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵})
2 sbcex2 3082 . . . . 5 ([𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]𝑦, 𝑤⟩ ∈ 𝐵)
3 sbcel2g 3145 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦, 𝑤⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵))
43exbidv 1871 . . . . 5 (𝐴𝑉 → (∃𝑤[𝐴 / 𝑥]𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵))
52, 4bitrid 192 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵))
65abbidv 2347 . . 3 (𝐴𝑉 → {𝑦[𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵})
71, 6eqtrd 2262 . 2 (𝐴𝑉𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵})
8 dfdm3 4909 . . 3 dom 𝐵 = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵}
98csbeq2i 3151 . 2 𝐴 / 𝑥dom 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵}
10 dfdm3 4909 . 2 dom 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵}
117, 9, 103eqtr4g 2287 1 (𝐴𝑉𝐴 / 𝑥dom 𝐵 = dom 𝐴 / 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wex 1538  wcel 2200  {cab 2215  [wsbc 3028  csb 3124  cop 3669  dom cdm 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029  df-csb 3125  df-br 4084  df-dm 4729
This theorem is referenced by:  sbcfng  5471
  Copyright terms: Public domain W3C validator