ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbdmg GIF version

Theorem csbdmg 4626
Description: Distribute proper substitution through the domain of a class. (Contributed by Jim Kingdon, 8-Dec-2018.)
Assertion
Ref Expression
csbdmg (𝐴𝑉𝐴 / 𝑥dom 𝐵 = dom 𝐴 / 𝑥𝐵)

Proof of Theorem csbdmg
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 2989 . . 3 (𝐴𝑉𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵})
2 sbcex2 2892 . . . . 5 ([𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]𝑦, 𝑤⟩ ∈ 𝐵)
3 sbcel2g 2952 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦, 𝑤⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵))
43exbidv 1753 . . . . 5 (𝐴𝑉 → (∃𝑤[𝐴 / 𝑥]𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵))
52, 4syl5bb 190 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵))
65abbidv 2205 . . 3 (𝐴𝑉 → {𝑦[𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵})
71, 6eqtrd 2120 . 2 (𝐴𝑉𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵})
8 dfdm3 4619 . . 3 dom 𝐵 = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵}
98csbeq2i 2957 . 2 𝐴 / 𝑥dom 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵}
10 dfdm3 4619 . 2 dom 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵}
117, 9, 103eqtr4g 2145 1 (𝐴𝑉𝐴 / 𝑥dom 𝐵 = dom 𝐴 / 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1289  wex 1426  wcel 1438  {cab 2074  [wsbc 2840  csb 2933  cop 3447  dom cdm 4436
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-sbc 2841  df-csb 2934  df-br 3844  df-dm 4446
This theorem is referenced by:  sbcfng  5153
  Copyright terms: Public domain W3C validator