![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbdmg | GIF version |
Description: Distribute proper substitution through the domain of a class. (Contributed by Jim Kingdon, 8-Dec-2018.) |
Ref | Expression |
---|---|
csbdmg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbabg 3133 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵}) | |
2 | sbcex2 3031 | . . . . 5 ⊢ ([𝐴 / 𝑥]∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]〈𝑦, 𝑤〉 ∈ 𝐵) | |
3 | sbcel2g 3093 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]〈𝑦, 𝑤〉 ∈ 𝐵 ↔ 〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵)) | |
4 | 3 | exbidv 1836 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (∃𝑤[𝐴 / 𝑥]〈𝑦, 𝑤〉 ∈ 𝐵 ↔ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵)) |
5 | 2, 4 | bitrid 192 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵 ↔ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵)) |
6 | 5 | abbidv 2307 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵}) |
7 | 1, 6 | eqtrd 2222 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵}) |
8 | dfdm3 4829 | . . 3 ⊢ dom 𝐵 = {𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} | |
9 | 8 | csbeq2i 3099 | . 2 ⊢ ⦋𝐴 / 𝑥⦌dom 𝐵 = ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} |
10 | dfdm3 4829 | . 2 ⊢ dom ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} | |
11 | 7, 9, 10 | 3eqtr4g 2247 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∃wex 1503 ∈ wcel 2160 {cab 2175 [wsbc 2977 ⦋csb 3072 〈cop 3610 dom cdm 4641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-sbc 2978 df-csb 3073 df-br 4019 df-dm 4651 |
This theorem is referenced by: sbcfng 5378 |
Copyright terms: Public domain | W3C validator |