ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbdmg GIF version

Theorem csbdmg 4877
Description: Distribute proper substitution through the domain of a class. (Contributed by Jim Kingdon, 8-Dec-2018.)
Assertion
Ref Expression
csbdmg (𝐴𝑉𝐴 / 𝑥dom 𝐵 = dom 𝐴 / 𝑥𝐵)

Proof of Theorem csbdmg
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 3156 . . 3 (𝐴𝑉𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵})
2 sbcex2 3053 . . . . 5 ([𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]𝑦, 𝑤⟩ ∈ 𝐵)
3 sbcel2g 3115 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦, 𝑤⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵))
43exbidv 1849 . . . . 5 (𝐴𝑉 → (∃𝑤[𝐴 / 𝑥]𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵))
52, 4bitrid 192 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵))
65abbidv 2324 . . 3 (𝐴𝑉 → {𝑦[𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵})
71, 6eqtrd 2239 . 2 (𝐴𝑉𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵})
8 dfdm3 4869 . . 3 dom 𝐵 = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵}
98csbeq2i 3121 . 2 𝐴 / 𝑥dom 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵}
10 dfdm3 4869 . 2 dom 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵}
117, 9, 103eqtr4g 2264 1 (𝐴𝑉𝐴 / 𝑥dom 𝐵 = dom 𝐴 / 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wex 1516  wcel 2177  {cab 2192  [wsbc 2999  csb 3094  cop 3637  dom cdm 4679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-sbc 3000  df-csb 3095  df-br 4048  df-dm 4689
This theorem is referenced by:  sbcfng  5429
  Copyright terms: Public domain W3C validator