Theorem List for Intuitionistic Logic Explorer - 4801-4900 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | brcnvg 4801 |
The converse of a binary relation swaps arguments. Theorem 11 of [Suppes]
p. 61. (Contributed by NM, 10-Oct-2005.)
|
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
|
Theorem | opelcnv 4802 |
Ordered-pair membership in converse. (Contributed by NM,
13-Aug-1995.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) |
|
Theorem | brcnv 4803 |
The converse of a binary relation swaps arguments. Theorem 11 of
[Suppes] p. 61. (Contributed by NM,
13-Aug-1995.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
|
Theorem | csbcnvg 4804 |
Move class substitution in and out of the converse of a function.
(Contributed by Thierry Arnoux, 8-Feb-2017.)
|
⊢ (𝐴 ∈ 𝑉 → ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹) |
|
Theorem | cnvco 4805 |
Distributive law of converse over class composition. Theorem 26 of
[Suppes] p. 64. (Contributed by NM,
19-Mar-1998.) (Proof shortened by
Andrew Salmon, 27-Aug-2011.)
|
⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
|
Theorem | cnvuni 4806* |
The converse of a class union is the (indexed) union of the converses of
its members. (Contributed by NM, 11-Aug-2004.)
|
⊢ ◡∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ◡𝑥 |
|
Theorem | dfdm3 4807* |
Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring]
p. 24. (Contributed by NM, 28-Dec-1996.)
|
⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴} |
|
Theorem | dfrn2 4808* |
Alternate definition of range. Definition 4 of [Suppes] p. 60.
(Contributed by NM, 27-Dec-1996.)
|
⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
|
Theorem | dfrn3 4809* |
Alternate definition of range. Definition 6.5(2) of [TakeutiZaring]
p. 24. (Contributed by NM, 28-Dec-1996.)
|
⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
|
Theorem | elrn2g 4810* |
Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
|
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵)) |
|
Theorem | elrng 4811* |
Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
|
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)) |
|
Theorem | dfdm4 4812 |
Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
|
⊢ dom 𝐴 = ran ◡𝐴 |
|
Theorem | dfdmf 4813* |
Definition of domain, using bound-variable hypotheses instead of
distinct variable conditions. (Contributed by NM, 8-Mar-1995.)
(Revised by Mario Carneiro, 15-Oct-2016.)
|
⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
|
Theorem | csbdmg 4814 |
Distribute proper substitution through the domain of a class.
(Contributed by Jim Kingdon, 8-Dec-2018.)
|
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵) |
|
Theorem | eldmg 4815* |
Domain membership. Theorem 4 of [Suppes] p. 59.
(Contributed by Mario
Carneiro, 9-Jul-2014.)
|
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) |
|
Theorem | eldm2g 4816* |
Domain membership. Theorem 4 of [Suppes] p. 59.
(Contributed by NM,
27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵)) |
|
Theorem | eldm 4817* |
Membership in a domain. Theorem 4 of [Suppes]
p. 59. (Contributed by
NM, 2-Apr-2004.)
|
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
|
Theorem | eldm2 4818* |
Membership in a domain. Theorem 4 of [Suppes]
p. 59. (Contributed by
NM, 1-Aug-1994.)
|
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) |
|
Theorem | dmss 4819 |
Subset theorem for domain. (Contributed by NM, 11-Aug-1994.)
|
⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
|
Theorem | dmeq 4820 |
Equality theorem for domain. (Contributed by NM, 11-Aug-1994.)
|
⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) |
|
Theorem | dmeqi 4821 |
Equality inference for domain. (Contributed by NM, 4-Mar-2004.)
|
⊢ 𝐴 = 𝐵 ⇒ ⊢ dom 𝐴 = dom 𝐵 |
|
Theorem | dmeqd 4822 |
Equality deduction for domain. (Contributed by NM, 4-Mar-2004.)
|
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → dom 𝐴 = dom 𝐵) |
|
Theorem | opeldm 4823 |
Membership of first of an ordered pair in a domain. (Contributed by NM,
30-Jul-1995.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
|
Theorem | breldm 4824 |
Membership of first of a binary relation in a domain. (Contributed by
NM, 30-Jul-1995.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
|
Theorem | opeldmg 4825 |
Membership of first of an ordered pair in a domain. (Contributed by Jim
Kingdon, 9-Jul-2019.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶)) |
|
Theorem | breldmg 4826 |
Membership of first of a binary relation in a domain. (Contributed by
NM, 21-Mar-2007.)
|
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
|
Theorem | dmun 4827 |
The domain of a union is the union of domains. Exercise 56(a) of
[Enderton] p. 65. (Contributed by NM,
12-Aug-1994.) (Proof shortened
by Andrew Salmon, 27-Aug-2011.)
|
⊢ dom (𝐴 ∪ 𝐵) = (dom 𝐴 ∪ dom 𝐵) |
|
Theorem | dmin 4828 |
The domain of an intersection belong to the intersection of domains.
Theorem 6 of [Suppes] p. 60.
(Contributed by NM, 15-Sep-2004.)
|
⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) |
|
Theorem | dmiun 4829 |
The domain of an indexed union. (Contributed by Mario Carneiro,
26-Apr-2016.)
|
⊢ dom ∪
𝑥 ∈ 𝐴 𝐵 = ∪
𝑥 ∈ 𝐴 dom 𝐵 |
|
Theorem | dmuni 4830* |
The domain of a union. Part of Exercise 8 of [Enderton] p. 41.
(Contributed by NM, 3-Feb-2004.)
|
⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
|
Theorem | dmopab 4831* |
The domain of a class of ordered pairs. (Contributed by NM,
16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
|
⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} |
|
Theorem | dmopabss 4832* |
Upper bound for the domain of a restricted class of ordered pairs.
(Contributed by NM, 31-Jan-2004.)
|
⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
|
Theorem | dmopab3 4833* |
The domain of a restricted class of ordered pairs. (Contributed by NM,
31-Jan-2004.)
|
⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
|
Theorem | dm0 4834 |
The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1]
p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew
Salmon, 27-Aug-2011.)
|
⊢ dom ∅ = ∅ |
|
Theorem | dmi 4835 |
The domain of the identity relation is the universe. (Contributed by
NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
|
⊢ dom I = V |
|
Theorem | dmv 4836 |
The domain of the universe is the universe. (Contributed by NM,
8-Aug-2003.)
|
⊢ dom V = V |
|
Theorem | dm0rn0 4837 |
An empty domain implies an empty range. For a similar theorem for
whether the domain and range are inhabited, see dmmrnm 4839. (Contributed
by NM, 21-May-1998.)
|
⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) |
|
Theorem | reldm0 4838 |
A relation is empty iff its domain is empty. (Contributed by NM,
15-Sep-2004.)
|
⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
|
Theorem | dmmrnm 4839* |
A domain is inhabited if and only if the range is inhabited.
(Contributed by Jim Kingdon, 15-Dec-2018.)
|
⊢ (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴) |
|
Theorem | dmxpm 4840* |
The domain of a cross product. Part of Theorem 3.13(x) of [Monk1]
p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew
Salmon, 27-Aug-2011.)
|
⊢ (∃𝑥 𝑥 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) |
|
Theorem | dmxpid 4841 |
The domain of a square Cartesian product. (Contributed by NM,
28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.)
|
⊢ dom (𝐴 × 𝐴) = 𝐴 |
|
Theorem | dmxpin 4842 |
The domain of the intersection of two square Cartesian products. Unlike
dmin 4828, equality holds. (Contributed by NM,
29-Jan-2008.)
|
⊢ dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = (𝐴 ∩ 𝐵) |
|
Theorem | xpid11 4843 |
The Cartesian product of a class with itself is one-to-one. (Contributed
by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
|
⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵) |
|
Theorem | dmcnvcnv 4844 |
The domain of the double converse of a class (which doesn't have to be a
relation as in dfrel2 5071). (Contributed by NM, 8-Apr-2007.)
|
⊢ dom ◡◡𝐴 = dom 𝐴 |
|
Theorem | rncnvcnv 4845 |
The range of the double converse of a class. (Contributed by NM,
8-Apr-2007.)
|
⊢ ran ◡◡𝐴 = ran 𝐴 |
|
Theorem | elreldm 4846 |
The first member of an ordered pair in a relation belongs to the domain
of the relation. (Contributed by NM, 28-Jul-2004.)
|
⊢ ((Rel 𝐴 ∧ 𝐵 ∈ 𝐴) → ∩ ∩ 𝐵
∈ dom 𝐴) |
|
Theorem | rneq 4847 |
Equality theorem for range. (Contributed by NM, 29-Dec-1996.)
|
⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
|
Theorem | rneqi 4848 |
Equality inference for range. (Contributed by NM, 4-Mar-2004.)
|
⊢ 𝐴 = 𝐵 ⇒ ⊢ ran 𝐴 = ran 𝐵 |
|
Theorem | rneqd 4849 |
Equality deduction for range. (Contributed by NM, 4-Mar-2004.)
|
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
|
Theorem | rnss 4850 |
Subset theorem for range. (Contributed by NM, 22-Mar-1998.)
|
⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
|
Theorem | brelrng 4851 |
The second argument of a binary relation belongs to its range.
(Contributed by NM, 29-Jun-2008.)
|
⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) |
|
Theorem | opelrng 4852 |
Membership of second member of an ordered pair in a range. (Contributed
by Jim Kingdon, 26-Jan-2019.)
|
⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) → 𝐵 ∈ ran 𝐶) |
|
Theorem | brelrn 4853 |
The second argument of a binary relation belongs to its range.
(Contributed by NM, 13-Aug-2004.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
|
Theorem | opelrn 4854 |
Membership of second member of an ordered pair in a range. (Contributed
by NM, 23-Feb-1997.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ran 𝐶) |
|
Theorem | releldm 4855 |
The first argument of a binary relation belongs to its domain.
(Contributed by NM, 2-Jul-2008.)
|
⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
|
Theorem | relelrn 4856 |
The second argument of a binary relation belongs to its range.
(Contributed by NM, 2-Jul-2008.)
|
⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅) |
|
Theorem | releldmb 4857* |
Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.)
|
⊢ (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
|
Theorem | relelrnb 4858* |
Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.)
|
⊢ (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴)) |
|
Theorem | releldmi 4859 |
The first argument of a binary relation belongs to its domain.
(Contributed by NM, 28-Apr-2015.)
|
⊢ Rel 𝑅 ⇒ ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
|
Theorem | relelrni 4860 |
The second argument of a binary relation belongs to its range.
(Contributed by NM, 28-Apr-2015.)
|
⊢ Rel 𝑅 ⇒ ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ ran 𝑅) |
|
Theorem | dfrnf 4861* |
Definition of range, using bound-variable hypotheses instead of distinct
variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by
Mario Carneiro, 15-Oct-2016.)
|
⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
|
Theorem | elrn2 4862* |
Membership in a range. (Contributed by NM, 10-Jul-1994.)
|
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) |
|
Theorem | elrn 4863* |
Membership in a range. (Contributed by NM, 2-Apr-2004.)
|
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
|
Theorem | nfdm 4864 |
Bound-variable hypothesis builder for domain. (Contributed by NM,
30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
|
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥dom 𝐴 |
|
Theorem | nfrn 4865 |
Bound-variable hypothesis builder for range. (Contributed by NM,
1-Sep-1999.) (Revised by Mario Carneiro, 15-Oct-2016.)
|
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥ran 𝐴 |
|
Theorem | dmiin 4866 |
Domain of an intersection. (Contributed by FL, 15-Oct-2012.)
|
⊢ dom ∩
𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 |
|
Theorem | rnopab 4867* |
The range of a class of ordered pairs. (Contributed by NM,
14-Aug-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
|
⊢ ran {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑦 ∣ ∃𝑥𝜑} |
|
Theorem | rnmpt 4868* |
The range of a function in maps-to notation. (Contributed by Scott
Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
|
Theorem | elrnmpt 4869* |
The range of a function in maps-to notation. (Contributed by Mario
Carneiro, 20-Feb-2015.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
|
Theorem | elrnmpt1s 4870* |
Elementhood in an image set. (Contributed by Mario Carneiro,
12-Sep-2015.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)
& ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) ⇒ ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) |
|
Theorem | elrnmpt1 4871 |
Elementhood in an image set. (Contributed by Mario Carneiro,
31-Aug-2015.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ ran 𝐹) |
|
Theorem | elrnmptg 4872* |
Membership in the range of a function. (Contributed by NM,
27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
|
Theorem | elrnmpti 4873* |
Membership in the range of a function. (Contributed by NM,
30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)
& ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
|
Theorem | elrnmptdv 4874* |
Elementhood in the range of a function in maps-to notation, deduction
form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)
& ⊢ (𝜑 → 𝐶 ∈ 𝐴)
& ⊢ (𝜑 → 𝐷 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) |
|
Theorem | elrnmpt2d 4875* |
Elementhood in the range of a function in maps-to notation, deduction
form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)
& ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
|
Theorem | rn0 4876 |
The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1]
p. 36. (Contributed by NM, 4-Jul-1994.)
|
⊢ ran ∅ = ∅ |
|
Theorem | dfiun3g 4877 |
Alternate definition of indexed union when 𝐵 is a set. (Contributed
by Mario Carneiro, 31-Aug-2015.)
|
⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪
𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
|
Theorem | dfiin3g 4878 |
Alternate definition of indexed intersection when 𝐵 is a set.
(Contributed by Mario Carneiro, 31-Aug-2015.)
|
⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∩
𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
|
Theorem | dfiun3 4879 |
Alternate definition of indexed union when 𝐵 is a set. (Contributed
by Mario Carneiro, 31-Aug-2015.)
|
⊢ 𝐵 ∈ V ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
|
Theorem | dfiin3 4880 |
Alternate definition of indexed intersection when 𝐵 is a set.
(Contributed by Mario Carneiro, 31-Aug-2015.)
|
⊢ 𝐵 ∈ V ⇒ ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
|
Theorem | riinint 4881* |
Express a relative indexed intersection as an intersection.
(Contributed by Stefan O'Rear, 22-Feb-2015.)
|
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩
𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
|
Theorem | relrn0 4882 |
A relation is empty iff its range is empty. (Contributed by NM,
15-Sep-2004.)
|
⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅)) |
|
Theorem | dmrnssfld 4883 |
The domain and range of a class are included in its double union.
(Contributed by NM, 13-May-2008.)
|
⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪
∪ 𝐴 |
|
Theorem | dmexg 4884 |
The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26.
(Contributed by NM, 7-Apr-1995.)
|
⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
|
Theorem | rnexg 4885 |
The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26.
Similar to Lemma 3D of [Enderton] p. 41.
(Contributed by NM,
31-Mar-1995.)
|
⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
|
Theorem | dmex 4886 |
The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring]
p. 26. (Contributed by NM, 7-Jul-2008.)
|
⊢ 𝐴 ∈ V ⇒ ⊢ dom 𝐴 ∈ V |
|
Theorem | rnex 4887 |
The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26.
Similar to Lemma 3D of [Enderton] p.
41. (Contributed by NM,
7-Jul-2008.)
|
⊢ 𝐴 ∈ V ⇒ ⊢ ran 𝐴 ∈ V |
|
Theorem | iprc 4888 |
The identity function is a proper class. This means, for example, that we
cannot use it as a member of the class of continuous functions unless it
is restricted to a set. (Contributed by NM, 1-Jan-2007.)
|
⊢ ¬ I ∈ V |
|
Theorem | dmcoss 4889 |
Domain of a composition. Theorem 21 of [Suppes]
p. 63. (Contributed by
NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
|
⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
|
Theorem | rncoss 4890 |
Range of a composition. (Contributed by NM, 19-Mar-1998.)
|
⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
|
Theorem | dmcosseq 4891 |
Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof
shortened by Andrew Salmon, 27-Aug-2011.)
|
⊢ (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴 ∘ 𝐵) = dom 𝐵) |
|
Theorem | dmcoeq 4892 |
Domain of a composition. (Contributed by NM, 19-Mar-1998.)
|
⊢ (dom 𝐴 = ran 𝐵 → dom (𝐴 ∘ 𝐵) = dom 𝐵) |
|
Theorem | rncoeq 4893 |
Range of a composition. (Contributed by NM, 19-Mar-1998.)
|
⊢ (dom 𝐴 = ran 𝐵 → ran (𝐴 ∘ 𝐵) = ran 𝐴) |
|
Theorem | reseq1 4894 |
Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.)
|
⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
|
Theorem | reseq2 4895 |
Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.)
|
⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
|
Theorem | reseq1i 4896 |
Equality inference for restrictions. (Contributed by NM,
21-Oct-2014.)
|
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
|
Theorem | reseq2i 4897 |
Equality inference for restrictions. (Contributed by Paul Chapman,
22-Jun-2011.)
|
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
|
Theorem | reseq12i 4898 |
Equality inference for restrictions. (Contributed by NM,
21-Oct-2014.)
|
⊢ 𝐴 = 𝐵
& ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
|
Theorem | reseq1d 4899 |
Equality deduction for restrictions. (Contributed by NM,
21-Oct-2014.)
|
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
|
Theorem | reseq2d 4900 |
Equality deduction for restrictions. (Contributed by Paul Chapman,
22-Jun-2011.)
|
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |