HomeHome Intuitionistic Logic Explorer
Theorem List (p. 49 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4801-4900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremelrn2g 4801* Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
(𝐴𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵))
 
Theoremelrng 4802* Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
(𝐴𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴))
 
Theoremdfdm4 4803 Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
dom 𝐴 = ran 𝐴
 
Theoremdfdmf 4804* Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴    &   𝑦𝐴       dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
 
Theoremcsbdmg 4805 Distribute proper substitution through the domain of a class. (Contributed by Jim Kingdon, 8-Dec-2018.)
(𝐴𝑉𝐴 / 𝑥dom 𝐵 = dom 𝐴 / 𝑥𝐵)
 
Theoremeldmg 4806* Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.)
(𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
 
Theoremeldm2g 4807* Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.)
(𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵))
 
Theoremeldm 4808* Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.)
𝐴 ∈ V       (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)
 
Theoremeldm2 4809* Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.)
𝐴 ∈ V       (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
 
Theoremdmss 4810 Subset theorem for domain. (Contributed by NM, 11-Aug-1994.)
(𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)
 
Theoremdmeq 4811 Equality theorem for domain. (Contributed by NM, 11-Aug-1994.)
(𝐴 = 𝐵 → dom 𝐴 = dom 𝐵)
 
Theoremdmeqi 4812 Equality inference for domain. (Contributed by NM, 4-Mar-2004.)
𝐴 = 𝐵       dom 𝐴 = dom 𝐵
 
Theoremdmeqd 4813 Equality deduction for domain. (Contributed by NM, 4-Mar-2004.)
(𝜑𝐴 = 𝐵)       (𝜑 → dom 𝐴 = dom 𝐵)
 
Theoremopeldm 4814 Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶)
 
Theorembreldm 4815 Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝑅𝐵𝐴 ∈ dom 𝑅)
 
Theoremopeldmg 4816 Membership of first of an ordered pair in a domain. (Contributed by Jim Kingdon, 9-Jul-2019.)
((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶))
 
Theorembreldmg 4817 Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.)
((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
 
Theoremdmun 4818 The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
 
Theoremdmin 4819 The domain of an intersection belong to the intersection of domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
dom (𝐴𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵)
 
Theoremdmiun 4820 The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.)
dom 𝑥𝐴 𝐵 = 𝑥𝐴 dom 𝐵
 
Theoremdmuni 4821* The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.)
dom 𝐴 = 𝑥𝐴 dom 𝑥
 
Theoremdmopab 4822* The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑}
 
Theoremdmopabss 4823* Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
 
Theoremdmopab3 4824* The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
(∀𝑥𝐴𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴)
 
Theoremdm0 4825 The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
dom ∅ = ∅
 
Theoremdmi 4826 The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
dom I = V
 
Theoremdmv 4827 The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.)
dom V = V
 
Theoremdm0rn0 4828 An empty domain implies an empty range. For a similar theorem for whether the domain and range are inhabited, see dmmrnm 4830. (Contributed by NM, 21-May-1998.)
(dom 𝐴 = ∅ ↔ ran 𝐴 = ∅)
 
Theoremreldm0 4829 A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.)
(Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅))
 
Theoremdmmrnm 4830* A domain is inhabited if and only if the range is inhabited. (Contributed by Jim Kingdon, 15-Dec-2018.)
(∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴)
 
Theoremdmxpm 4831* The domain of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(∃𝑥 𝑥𝐵 → dom (𝐴 × 𝐵) = 𝐴)
 
Theoremdmxpid 4832 The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.)
dom (𝐴 × 𝐴) = 𝐴
 
Theoremdmxpin 4833 The domain of the intersection of two square Cartesian products. Unlike dmin 4819, equality holds. (Contributed by NM, 29-Jan-2008.)
dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = (𝐴𝐵)
 
Theoremxpid11 4834 The Cartesian product of a class with itself is one-to-one. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵)
 
Theoremdmcnvcnv 4835 The domain of the double converse of a class (which doesn't have to be a relation as in dfrel2 5061). (Contributed by NM, 8-Apr-2007.)
dom 𝐴 = dom 𝐴
 
Theoremrncnvcnv 4836 The range of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
ran 𝐴 = ran 𝐴
 
Theoremelreldm 4837 The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.)
((Rel 𝐴𝐵𝐴) → 𝐵 ∈ dom 𝐴)
 
Theoremrneq 4838 Equality theorem for range. (Contributed by NM, 29-Dec-1996.)
(𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)
 
Theoremrneqi 4839 Equality inference for range. (Contributed by NM, 4-Mar-2004.)
𝐴 = 𝐵       ran 𝐴 = ran 𝐵
 
Theoremrneqd 4840 Equality deduction for range. (Contributed by NM, 4-Mar-2004.)
(𝜑𝐴 = 𝐵)       (𝜑 → ran 𝐴 = ran 𝐵)
 
Theoremrnss 4841 Subset theorem for range. (Contributed by NM, 22-Mar-1998.)
(𝐴𝐵 → ran 𝐴 ⊆ ran 𝐵)
 
Theorembrelrng 4842 The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.)
((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶)
 
Theoremopelrng 4843 Membership of second member of an ordered pair in a range. (Contributed by Jim Kingdon, 26-Jan-2019.)
((𝐴𝐹𝐵𝐺 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) → 𝐵 ∈ ran 𝐶)
 
Theorembrelrn 4844 The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝐶𝐵𝐵 ∈ ran 𝐶)
 
Theoremopelrn 4845 Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐵 ∈ ran 𝐶)
 
Theoremreleldm 4846 The first argument of a binary relation belongs to its domain. (Contributed by NM, 2-Jul-2008.)
((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
 
Theoremrelelrn 4847 The second argument of a binary relation belongs to its range. (Contributed by NM, 2-Jul-2008.)
((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅)
 
Theoremreleldmb 4848* Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.)
(Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
 
Theoremrelelrnb 4849* Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.)
(Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴))
 
Theoremreleldmi 4850 The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.)
Rel 𝑅       (𝐴𝑅𝐵𝐴 ∈ dom 𝑅)
 
Theoremrelelrni 4851 The second argument of a binary relation belongs to its range. (Contributed by NM, 28-Apr-2015.)
Rel 𝑅       (𝐴𝑅𝐵𝐵 ∈ ran 𝑅)
 
Theoremdfrnf 4852* Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴    &   𝑦𝐴       ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
 
Theoremelrn2 4853* Membership in a range. (Contributed by NM, 10-Jul-1994.)
𝐴 ∈ V       (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵)
 
Theoremelrn 4854* Membership in a range. (Contributed by NM, 2-Apr-2004.)
𝐴 ∈ V       (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)
 
Theoremnfdm 4855 Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴       𝑥dom 𝐴
 
Theoremnfrn 4856 Bound-variable hypothesis builder for range. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴       𝑥ran 𝐴
 
Theoremdmiin 4857 Domain of an intersection. (Contributed by FL, 15-Oct-2012.)
dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵
 
Theoremrnopab 4858* The range of a class of ordered pairs. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
ran {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑦 ∣ ∃𝑥𝜑}
 
Theoremrnmpt 4859* The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴𝐵)       ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
 
Theoremelrnmpt 4860* The range of a function in maps-to notation. (Contributed by Mario Carneiro, 20-Feb-2015.)
𝐹 = (𝑥𝐴𝐵)       (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
 
Theoremelrnmpt1s 4861* Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015.)
𝐹 = (𝑥𝐴𝐵)    &   (𝑥 = 𝐷𝐵 = 𝐶)       ((𝐷𝐴𝐶𝑉) → 𝐶 ∈ ran 𝐹)
 
Theoremelrnmpt1 4862 Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴𝐵)       ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran 𝐹)
 
Theoremelrnmptg 4863* Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴𝐵)       (∀𝑥𝐴 𝐵𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
 
Theoremelrnmpti 4864* Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴𝐵)    &   𝐵 ∈ V       (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵)
 
Theoremelrnmptdv 4865* Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐹 = (𝑥𝐴𝐵)    &   (𝜑𝐶𝐴)    &   (𝜑𝐷𝑉)    &   ((𝜑𝑥 = 𝐶) → 𝐷 = 𝐵)       (𝜑𝐷 ∈ ran 𝐹)
 
Theoremelrnmpt2d 4866* Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐹 = (𝑥𝐴𝐵)    &   (𝜑𝐶 ∈ ran 𝐹)       (𝜑 → ∃𝑥𝐴 𝐶 = 𝐵)
 
Theoremrn0 4867 The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.)
ran ∅ = ∅
 
Theoremdfiun3g 4868 Alternate definition of indexed union when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
(∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
 
Theoremdfiin3g 4869 Alternate definition of indexed intersection when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
(∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
 
Theoremdfiun3 4870 Alternate definition of indexed union when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
𝐵 ∈ V        𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵)
 
Theoremdfiin3 4871 Alternate definition of indexed intersection when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
𝐵 ∈ V        𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵)
 
Theoremriinint 4872* Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
 
Theoremrelrn0 4873 A relation is empty iff its range is empty. (Contributed by NM, 15-Sep-2004.)
(Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅))
 
Theoremdmrnssfld 4874 The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.)
(dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
 
Theoremdmexg 4875 The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Apr-1995.)
(𝐴𝑉 → dom 𝐴 ∈ V)
 
Theoremrnexg 4876 The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.)
(𝐴𝑉 → ran 𝐴 ∈ V)
 
Theoremdmex 4877 The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.)
𝐴 ∈ V       dom 𝐴 ∈ V
 
Theoremrnex 4878 The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 7-Jul-2008.)
𝐴 ∈ V       ran 𝐴 ∈ V
 
Theoremiprc 4879 The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set. (Contributed by NM, 1-Jan-2007.)
¬ I ∈ V
 
Theoremdmcoss 4880 Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
dom (𝐴𝐵) ⊆ dom 𝐵
 
Theoremrncoss 4881 Range of a composition. (Contributed by NM, 19-Mar-1998.)
ran (𝐴𝐵) ⊆ ran 𝐴
 
Theoremdmcosseq 4882 Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(ran 𝐵 ⊆ dom 𝐴 → dom (𝐴𝐵) = dom 𝐵)
 
Theoremdmcoeq 4883 Domain of a composition. (Contributed by NM, 19-Mar-1998.)
(dom 𝐴 = ran 𝐵 → dom (𝐴𝐵) = dom 𝐵)
 
Theoremrncoeq 4884 Range of a composition. (Contributed by NM, 19-Mar-1998.)
(dom 𝐴 = ran 𝐵 → ran (𝐴𝐵) = ran 𝐴)
 
Theoremreseq1 4885 Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.)
(𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremreseq2 4886 Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.)
(𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremreseq1i 4887 Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
𝐴 = 𝐵       (𝐴𝐶) = (𝐵𝐶)
 
Theoremreseq2i 4888 Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐴 = 𝐵       (𝐶𝐴) = (𝐶𝐵)
 
Theoremreseq12i 4889 Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝐶) = (𝐵𝐷)
 
Theoremreseq1d 4890 Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremreseq2d 4891 Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremreseq12d 4892 Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐶) = (𝐵𝐷))
 
Theoremnfres 4893 Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.)
𝑥𝐴    &   𝑥𝐵       𝑥(𝐴𝐵)
 
Theoremcsbresg 4894 Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
 
Theoremres0 4895 A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.)
(𝐴 ↾ ∅) = ∅
 
Theoremopelres 4896 Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.)
𝐵 ∈ V       (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷))
 
Theorembrres 4897 Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.)
𝐵 ∈ V       (𝐴(𝐶𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐴𝐷))
 
Theoremopelresg 4898 Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 14-Oct-2005.)
(𝐵𝑉 → (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷)))
 
Theorembrresg 4899 Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.)
(𝐵𝑉 → (𝐴(𝐶𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐴𝐷)))
 
Theoremopres 4900 Ordered pair membership in a restriction when the first member belongs to the restricting class. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
𝐵 ∈ V       (𝐴𝐷 → (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >