ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfidc GIF version

Theorem ssfidc 6569
Description: A subset of a finite set is finite if membership in the subset is decidable. (Contributed by Jim Kingdon, 27-May-2022.)
Assertion
Ref Expression
ssfidc ((𝐴 ∈ Fin ∧ 𝐵𝐴 ∧ ∀𝑥𝐴 DECID 𝑥𝐵) → 𝐵 ∈ Fin)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssfidc
StepHypRef Expression
1 dfss1 3188 . . . 4 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
21biimpi 118 . . 3 (𝐵𝐴 → (𝐴𝐵) = 𝐵)
323ad2ant2 961 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴 ∧ ∀𝑥𝐴 DECID 𝑥𝐵) → (𝐴𝐵) = 𝐵)
4 dfin5 2991 . . 3 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
5 simp1 939 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵𝐴 ∧ ∀𝑥𝐴 DECID 𝑥𝐵) → 𝐴 ∈ Fin)
6 simp3 941 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵𝐴 ∧ ∀𝑥𝐴 DECID 𝑥𝐵) → ∀𝑥𝐴 DECID 𝑥𝐵)
75, 6ssfirab 6568 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴 ∧ ∀𝑥𝐴 DECID 𝑥𝐵) → {𝑥𝐴𝑥𝐵} ∈ Fin)
84, 7syl5eqel 2169 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴 ∧ ∀𝑥𝐴 DECID 𝑥𝐵) → (𝐴𝐵) ∈ Fin)
93, 8eqeltrrd 2160 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴 ∧ ∀𝑥𝐴 DECID 𝑥𝐵) → 𝐵 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  DECID wdc 776  w3a 920   = wceq 1285  wcel 1434  wral 2353  {crab 2357  cin 2983  wss 2984  Fincfn 6387
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-1o 6113  df-er 6222  df-en 6388  df-fin 6390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator