| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnminle | GIF version | ||
| Description: The infimum of a decidable subset of the natural numbers is less than an element of the set. The infimum is also a minimum as shown at nnmindc 12226. (Contributed by Jim Kingdon, 26-Sep-2024.) |
| Ref | Expression |
|---|---|
| nnminle | ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → inf(𝐴, ℝ, < ) ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss5 3369 | . . . . . 6 ⊢ (𝐴 ⊆ ℕ ↔ 𝐴 = (ℕ ∩ 𝐴)) | |
| 2 | 1 | biimpi 120 | . . . . 5 ⊢ (𝐴 ⊆ ℕ → 𝐴 = (ℕ ∩ 𝐴)) |
| 3 | nnuz 9654 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
| 4 | 3 | ineq1i 3361 | . . . . . 6 ⊢ (ℕ ∩ 𝐴) = ((ℤ≥‘1) ∩ 𝐴) |
| 5 | dfin5 3164 | . . . . . 6 ⊢ ((ℤ≥‘1) ∩ 𝐴) = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} | |
| 6 | 4, 5 | eqtri 2217 | . . . . 5 ⊢ (ℕ ∩ 𝐴) = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} |
| 7 | 2, 6 | eqtrdi 2245 | . . . 4 ⊢ (𝐴 ⊆ ℕ → 𝐴 = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}) |
| 8 | 7 | 3ad2ant1 1020 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐴 = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}) |
| 9 | 8 | infeq1d 7087 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → inf(𝐴, ℝ, < ) = inf({𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}, ℝ, < )) |
| 10 | 1zzd 9370 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → 1 ∈ ℤ) | |
| 11 | eqid 2196 | . . 3 ⊢ {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} | |
| 12 | simp3 1001 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | |
| 13 | 12, 8 | eleqtrd 2275 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}) |
| 14 | eleq1w 2257 | . . . . 5 ⊢ (𝑥 = 𝑛 → (𝑥 ∈ 𝐴 ↔ 𝑛 ∈ 𝐴)) | |
| 15 | 14 | dcbid 839 | . . . 4 ⊢ (𝑥 = 𝑛 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑛 ∈ 𝐴)) |
| 16 | simpl2 1003 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑛 ∈ (1...𝐵)) → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) | |
| 17 | elfznn 10146 | . . . . 5 ⊢ (𝑛 ∈ (1...𝐵) → 𝑛 ∈ ℕ) | |
| 18 | 17 | adantl 277 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑛 ∈ (1...𝐵)) → 𝑛 ∈ ℕ) |
| 19 | 15, 16, 18 | rspcdva 2873 | . . 3 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑛 ∈ (1...𝐵)) → DECID 𝑛 ∈ 𝐴) |
| 20 | 10, 11, 13, 19 | infssuzledc 10341 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → inf({𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}, ℝ, < ) ≤ 𝐵) |
| 21 | 9, 20 | eqbrtrd 4056 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → inf(𝐴, ℝ, < ) ≤ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∀wral 2475 {crab 2479 ∩ cin 3156 ⊆ wss 3157 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 infcinf 7058 ℝcr 7895 1c1 7897 < clt 8078 ≤ cle 8079 ℕcn 9007 ℤ≥cuz 9618 ...cfz 10100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-fzo 10235 |
| This theorem is referenced by: nnwodc 12228 |
| Copyright terms: Public domain | W3C validator |