ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnminle GIF version

Theorem nnminle 12551
Description: The infimum of a decidable subset of the natural numbers is less than an element of the set. The infimum is also a minimum as shown at nnmindc 12550. (Contributed by Jim Kingdon, 26-Sep-2024.)
Assertion
Ref Expression
nnminle ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴𝐵𝐴) → inf(𝐴, ℝ, < ) ≤ 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem nnminle
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 dfss5 3409 . . . . . 6 (𝐴 ⊆ ℕ ↔ 𝐴 = (ℕ ∩ 𝐴))
21biimpi 120 . . . . 5 (𝐴 ⊆ ℕ → 𝐴 = (ℕ ∩ 𝐴))
3 nnuz 9754 . . . . . . 7 ℕ = (ℤ‘1)
43ineq1i 3401 . . . . . 6 (ℕ ∩ 𝐴) = ((ℤ‘1) ∩ 𝐴)
5 dfin5 3204 . . . . . 6 ((ℤ‘1) ∩ 𝐴) = {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴}
64, 5eqtri 2250 . . . . 5 (ℕ ∩ 𝐴) = {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴}
72, 6eqtrdi 2278 . . . 4 (𝐴 ⊆ ℕ → 𝐴 = {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴})
873ad2ant1 1042 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴𝐵𝐴) → 𝐴 = {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴})
98infeq1d 7175 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴𝐵𝐴) → inf(𝐴, ℝ, < ) = inf({𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴}, ℝ, < ))
10 1zzd 9469 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴𝐵𝐴) → 1 ∈ ℤ)
11 eqid 2229 . . 3 {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴} = {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴}
12 simp3 1023 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴𝐵𝐴) → 𝐵𝐴)
1312, 8eleqtrd 2308 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴𝐵𝐴) → 𝐵 ∈ {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴})
14 eleq1w 2290 . . . . 5 (𝑥 = 𝑛 → (𝑥𝐴𝑛𝐴))
1514dcbid 843 . . . 4 (𝑥 = 𝑛 → (DECID 𝑥𝐴DECID 𝑛𝐴))
16 simpl2 1025 . . . 4 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴𝐵𝐴) ∧ 𝑛 ∈ (1...𝐵)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
17 elfznn 10246 . . . . 5 (𝑛 ∈ (1...𝐵) → 𝑛 ∈ ℕ)
1817adantl 277 . . . 4 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴𝐵𝐴) ∧ 𝑛 ∈ (1...𝐵)) → 𝑛 ∈ ℕ)
1915, 16, 18rspcdva 2912 . . 3 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴𝐵𝐴) ∧ 𝑛 ∈ (1...𝐵)) → DECID 𝑛𝐴)
2010, 11, 13, 19infssuzledc 10449 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴𝐵𝐴) → inf({𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴}, ℝ, < ) ≤ 𝐵)
219, 20eqbrtrd 4104 1 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴𝐵𝐴) → inf(𝐴, ℝ, < ) ≤ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200  wral 2508  {crab 2512  cin 3196  wss 3197   class class class wbr 4082  cfv 5317  (class class class)co 6000  infcinf 7146  cr 7994  1c1 7996   < clt 8177  cle 8178  cn 9106  cuz 9718  ...cfz 10200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335
This theorem is referenced by:  nnwodc  12552
  Copyright terms: Public domain W3C validator