![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnminle | GIF version |
Description: The infimum of a decidable subset of the natural numbers is less than an element of the set. The infimum is also a minimum as shown at nnmindc 12171. (Contributed by Jim Kingdon, 26-Sep-2024.) |
Ref | Expression |
---|---|
nnminle | ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → inf(𝐴, ℝ, < ) ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss5 3364 | . . . . . 6 ⊢ (𝐴 ⊆ ℕ ↔ 𝐴 = (ℕ ∩ 𝐴)) | |
2 | 1 | biimpi 120 | . . . . 5 ⊢ (𝐴 ⊆ ℕ → 𝐴 = (ℕ ∩ 𝐴)) |
3 | nnuz 9628 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
4 | 3 | ineq1i 3356 | . . . . . 6 ⊢ (ℕ ∩ 𝐴) = ((ℤ≥‘1) ∩ 𝐴) |
5 | dfin5 3160 | . . . . . 6 ⊢ ((ℤ≥‘1) ∩ 𝐴) = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} | |
6 | 4, 5 | eqtri 2214 | . . . . 5 ⊢ (ℕ ∩ 𝐴) = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} |
7 | 2, 6 | eqtrdi 2242 | . . . 4 ⊢ (𝐴 ⊆ ℕ → 𝐴 = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}) |
8 | 7 | 3ad2ant1 1020 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐴 = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}) |
9 | 8 | infeq1d 7071 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → inf(𝐴, ℝ, < ) = inf({𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}, ℝ, < )) |
10 | 1zzd 9344 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → 1 ∈ ℤ) | |
11 | eqid 2193 | . . 3 ⊢ {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} | |
12 | simp3 1001 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | |
13 | 12, 8 | eleqtrd 2272 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}) |
14 | eleq1w 2254 | . . . . 5 ⊢ (𝑥 = 𝑛 → (𝑥 ∈ 𝐴 ↔ 𝑛 ∈ 𝐴)) | |
15 | 14 | dcbid 839 | . . . 4 ⊢ (𝑥 = 𝑛 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑛 ∈ 𝐴)) |
16 | simpl2 1003 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑛 ∈ (1...𝐵)) → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) | |
17 | elfznn 10120 | . . . . 5 ⊢ (𝑛 ∈ (1...𝐵) → 𝑛 ∈ ℕ) | |
18 | 17 | adantl 277 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑛 ∈ (1...𝐵)) → 𝑛 ∈ ℕ) |
19 | 15, 16, 18 | rspcdva 2869 | . . 3 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑛 ∈ (1...𝐵)) → DECID 𝑛 ∈ 𝐴) |
20 | 10, 11, 13, 19 | infssuzledc 12087 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → inf({𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}, ℝ, < ) ≤ 𝐵) |
21 | 9, 20 | eqbrtrd 4051 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → inf(𝐴, ℝ, < ) ≤ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∀wral 2472 {crab 2476 ∩ cin 3152 ⊆ wss 3153 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 infcinf 7042 ℝcr 7871 1c1 7873 < clt 8054 ≤ cle 8055 ℕcn 8982 ℤ≥cuz 9592 ...cfz 10074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-sup 7043 df-inf 7044 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 df-fz 10075 df-fzo 10209 |
This theorem is referenced by: nnwodc 12173 |
Copyright terms: Public domain | W3C validator |