ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znnen GIF version

Theorem znnen 12353
Description: The set of integers and the set of positive integers are equinumerous. Corollary 8.1.23 of [AczelRathjen], p. 75. (Contributed by NM, 31-Jul-2004.)
Assertion
Ref Expression
znnen ℤ ≈ ℕ

Proof of Theorem znnen
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unrab 3398 . . 3 ({𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ} ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = {𝑧 ∈ ℤ ∣ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)}
2 nnssz 9229 . . . . . 6 ℕ ⊆ ℤ
3 dfss1 3331 . . . . . 6 (ℕ ⊆ ℤ ↔ (ℤ ∩ ℕ) = ℕ)
42, 3mpbi 144 . . . . 5 (ℤ ∩ ℕ) = ℕ
5 dfin5 3128 . . . . 5 (ℤ ∩ ℕ) = {𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ}
64, 5eqtr3i 2193 . . . 4 ℕ = {𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ}
76uneq1i 3277 . . 3 (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = ({𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ} ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
8 rabid2 2646 . . . 4 (ℤ = {𝑧 ∈ ℤ ∣ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)} ↔ ∀𝑧 ∈ ℤ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0))
9 elznn 9228 . . . . 5 (𝑧 ∈ ℤ ↔ (𝑧 ∈ ℝ ∧ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)))
109simprbi 273 . . . 4 (𝑧 ∈ ℤ → (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0))
118, 10mprgbir 2528 . . 3 ℤ = {𝑧 ∈ ℤ ∣ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)}
121, 7, 113eqtr4ri 2202 . 2 ℤ = (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
13 nnex 8884 . . . 4 ℕ ∈ V
1413enref 6743 . . 3 ℕ ≈ ℕ
15 zex 9221 . . . . . 6 ℤ ∈ V
1615rabex 4133 . . . . 5 {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∈ V
17 nn0ex 9141 . . . . 5 0 ∈ V
18 negeq 8112 . . . . . . . 8 (𝑧 = 𝑥 → -𝑧 = -𝑥)
1918eleq1d 2239 . . . . . . 7 (𝑧 = 𝑥 → (-𝑧 ∈ ℕ0 ↔ -𝑥 ∈ ℕ0))
2019elrab 2886 . . . . . 6 (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ↔ (𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0))
2120simprbi 273 . . . . 5 (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} → -𝑥 ∈ ℕ0)
22 negeq 8112 . . . . . . 7 (𝑧 = -𝑦 → -𝑧 = --𝑦)
2322eleq1d 2239 . . . . . 6 (𝑧 = -𝑦 → (-𝑧 ∈ ℕ0 ↔ --𝑦 ∈ ℕ0))
24 nn0negz 9246 . . . . . 6 (𝑦 ∈ ℕ0 → -𝑦 ∈ ℤ)
25 nn0cn 9145 . . . . . . . . 9 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
2625negnegd 8221 . . . . . . . 8 (𝑦 ∈ ℕ0 → --𝑦 = 𝑦)
2726eleq1d 2239 . . . . . . 7 (𝑦 ∈ ℕ0 → (--𝑦 ∈ ℕ0𝑦 ∈ ℕ0))
2827ibir 176 . . . . . 6 (𝑦 ∈ ℕ0 → --𝑦 ∈ ℕ0)
2923, 24, 28elrabd 2888 . . . . 5 (𝑦 ∈ ℕ0 → -𝑦 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
30 elrabi 2883 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} → 𝑥 ∈ ℤ)
3130adantr 274 . . . . . . 7 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℤ)
3231zcnd 9335 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℂ)
3325adantl 275 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℂ)
34 negcon2 8172 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
3532, 33, 34syl2anc 409 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → (𝑥 = -𝑦𝑦 = -𝑥))
3616, 17, 21, 29, 35en3i 6749 . . . 4 {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ≈ ℕ0
37 nn0ennn 10389 . . . 4 0 ≈ ℕ
3836, 37entri 6764 . . 3 {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ≈ ℕ
39 inrab2 3400 . . . 4 ({𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∩ ℕ) = {𝑧 ∈ (ℤ ∩ ℕ) ∣ -𝑧 ∈ ℕ0}
40 incom 3319 . . . 4 ({𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∩ ℕ) = (ℕ ∩ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
41 rabeq0 3444 . . . . 5 ({𝑧 ∈ (ℤ ∩ ℕ) ∣ -𝑧 ∈ ℕ0} = ∅ ↔ ∀𝑧 ∈ (ℤ ∩ ℕ) ¬ -𝑧 ∈ ℕ0)
42 0red 7921 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 ∈ ℝ)
43 simpl 108 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 𝑧 ∈ ℕ)
4443nnred 8891 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 𝑧 ∈ ℝ)
45 nngt0 8903 . . . . . . . . 9 (𝑧 ∈ ℕ → 0 < 𝑧)
4645adantr 274 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 < 𝑧)
47 nn0ge0 9160 . . . . . . . . . 10 (-𝑧 ∈ ℕ0 → 0 ≤ -𝑧)
4847adantl 275 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 ≤ -𝑧)
4944le0neg1d 8436 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → (𝑧 ≤ 0 ↔ 0 ≤ -𝑧))
5048, 49mpbird 166 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 𝑧 ≤ 0)
5142, 44, 42, 46, 50ltletrd 8342 . . . . . . 7 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 < 0)
5242ltnrd 8031 . . . . . . 7 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → ¬ 0 < 0)
5351, 52pm2.65da 656 . . . . . 6 (𝑧 ∈ ℕ → ¬ -𝑧 ∈ ℕ0)
5453, 4eleq2s 2265 . . . . 5 (𝑧 ∈ (ℤ ∩ ℕ) → ¬ -𝑧 ∈ ℕ0)
5541, 54mprgbir 2528 . . . 4 {𝑧 ∈ (ℤ ∩ ℕ) ∣ -𝑧 ∈ ℕ0} = ∅
5639, 40, 553eqtr3i 2199 . . 3 (ℕ ∩ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = ∅
57 unennn 12352 . . 3 ((ℕ ≈ ℕ ∧ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ≈ ℕ ∧ (ℕ ∩ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = ∅) → (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) ≈ ℕ)
5814, 38, 56, 57mp3an 1332 . 2 (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) ≈ ℕ
5912, 58eqbrtri 4010 1 ℤ ≈ ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  {crab 2452  cun 3119  cin 3120  wss 3121  c0 3414   class class class wbr 3989  cen 6716  cc 7772  cr 7773  0cc0 7774   < clt 7954  cle 7955  -cneg 8091  cn 8878  0cn0 9135  cz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-er 6513  df-en 6719  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-q 9579  df-rp 9611  df-fl 10226  df-mod 10279  df-dvds 11750
This theorem is referenced by:  qnnen  12386
  Copyright terms: Public domain W3C validator