| Step | Hyp | Ref
| Expression |
| 1 | | unrab 3435 |
. . 3
⊢ ({𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ} ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) =
{𝑧 ∈ ℤ ∣
(𝑧 ∈ ℕ ∨
-𝑧 ∈
ℕ0)} |
| 2 | | nnssz 9360 |
. . . . . 6
⊢ ℕ
⊆ ℤ |
| 3 | | dfss1 3368 |
. . . . . 6
⊢ (ℕ
⊆ ℤ ↔ (ℤ ∩ ℕ) = ℕ) |
| 4 | 2, 3 | mpbi 145 |
. . . . 5
⊢ (ℤ
∩ ℕ) = ℕ |
| 5 | | dfin5 3164 |
. . . . 5
⊢ (ℤ
∩ ℕ) = {𝑧 ∈
ℤ ∣ 𝑧 ∈
ℕ} |
| 6 | 4, 5 | eqtr3i 2219 |
. . . 4
⊢ ℕ =
{𝑧 ∈ ℤ ∣
𝑧 ∈
ℕ} |
| 7 | 6 | uneq1i 3314 |
. . 3
⊢ (ℕ
∪ {𝑧 ∈ ℤ
∣ -𝑧 ∈
ℕ0}) = ({𝑧
∈ ℤ ∣ 𝑧
∈ ℕ} ∪ {𝑧
∈ ℤ ∣ -𝑧
∈ ℕ0}) |
| 8 | | rabid2 2674 |
. . . 4
⊢ (ℤ
= {𝑧 ∈ ℤ ∣
(𝑧 ∈ ℕ ∨
-𝑧 ∈
ℕ0)} ↔ ∀𝑧 ∈ ℤ (𝑧 ∈ ℕ ∨ -𝑧 ∈
ℕ0)) |
| 9 | | elznn 9359 |
. . . . 5
⊢ (𝑧 ∈ ℤ ↔ (𝑧 ∈ ℝ ∧ (𝑧 ∈ ℕ ∨ -𝑧 ∈
ℕ0))) |
| 10 | 9 | simprbi 275 |
. . . 4
⊢ (𝑧 ∈ ℤ → (𝑧 ∈ ℕ ∨ -𝑧 ∈
ℕ0)) |
| 11 | 8, 10 | mprgbir 2555 |
. . 3
⊢ ℤ =
{𝑧 ∈ ℤ ∣
(𝑧 ∈ ℕ ∨
-𝑧 ∈
ℕ0)} |
| 12 | 1, 7, 11 | 3eqtr4ri 2228 |
. 2
⊢ ℤ =
(ℕ ∪ {𝑧 ∈
ℤ ∣ -𝑧 ∈
ℕ0}) |
| 13 | | nnex 9013 |
. . . 4
⊢ ℕ
∈ V |
| 14 | 13 | enref 6833 |
. . 3
⊢ ℕ
≈ ℕ |
| 15 | | zex 9352 |
. . . . . 6
⊢ ℤ
∈ V |
| 16 | 15 | rabex 4178 |
. . . . 5
⊢ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}
∈ V |
| 17 | | nn0ex 9272 |
. . . . 5
⊢
ℕ0 ∈ V |
| 18 | | negeq 8236 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → -𝑧 = -𝑥) |
| 19 | 18 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (-𝑧 ∈ ℕ0 ↔ -𝑥 ∈
ℕ0)) |
| 20 | 19 | elrab 2920 |
. . . . . 6
⊢ (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ↔ (𝑥 ∈ ℤ ∧ -𝑥 ∈
ℕ0)) |
| 21 | 20 | simprbi 275 |
. . . . 5
⊢ (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} → -𝑥 ∈
ℕ0) |
| 22 | | negeq 8236 |
. . . . . . 7
⊢ (𝑧 = -𝑦 → -𝑧 = --𝑦) |
| 23 | 22 | eleq1d 2265 |
. . . . . 6
⊢ (𝑧 = -𝑦 → (-𝑧 ∈ ℕ0 ↔ --𝑦 ∈
ℕ0)) |
| 24 | | nn0negz 9377 |
. . . . . 6
⊢ (𝑦 ∈ ℕ0
→ -𝑦 ∈
ℤ) |
| 25 | | nn0cn 9276 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℂ) |
| 26 | 25 | negnegd 8345 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ0
→ --𝑦 = 𝑦) |
| 27 | 26 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ0
→ (--𝑦 ∈
ℕ0 ↔ 𝑦 ∈
ℕ0)) |
| 28 | 27 | ibir 177 |
. . . . . 6
⊢ (𝑦 ∈ ℕ0
→ --𝑦 ∈
ℕ0) |
| 29 | 23, 24, 28 | elrabd 2922 |
. . . . 5
⊢ (𝑦 ∈ ℕ0
→ -𝑦 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈
ℕ0}) |
| 30 | | elrabi 2917 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} → 𝑥 ∈
ℤ) |
| 31 | 30 | adantr 276 |
. . . . . . 7
⊢ ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0)
→ 𝑥 ∈
ℤ) |
| 32 | 31 | zcnd 9466 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0)
→ 𝑥 ∈
ℂ) |
| 33 | 25 | adantl 277 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0)
→ 𝑦 ∈
ℂ) |
| 34 | | negcon2 8296 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
| 35 | 32, 33, 34 | syl2anc 411 |
. . . . 5
⊢ ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0)
→ (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
| 36 | 16, 17, 21, 29, 35 | en3i 6839 |
. . . 4
⊢ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}
≈ ℕ0 |
| 37 | | nn0ennn 10542 |
. . . 4
⊢
ℕ0 ≈ ℕ |
| 38 | 36, 37 | entri 6854 |
. . 3
⊢ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}
≈ ℕ |
| 39 | | inrab2 3437 |
. . . 4
⊢ ({𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}
∩ ℕ) = {𝑧 ∈
(ℤ ∩ ℕ) ∣ -𝑧 ∈ ℕ0} |
| 40 | | incom 3356 |
. . . 4
⊢ ({𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}
∩ ℕ) = (ℕ ∩ {𝑧 ∈ ℤ ∣ -𝑧 ∈
ℕ0}) |
| 41 | | rabeq0 3481 |
. . . . 5
⊢ ({𝑧 ∈ (ℤ ∩ ℕ)
∣ -𝑧 ∈
ℕ0} = ∅ ↔ ∀𝑧 ∈ (ℤ ∩ ℕ) ¬ -𝑧 ∈
ℕ0) |
| 42 | | 0red 8044 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0)
→ 0 ∈ ℝ) |
| 43 | | simpl 109 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0)
→ 𝑧 ∈
ℕ) |
| 44 | 43 | nnred 9020 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0)
→ 𝑧 ∈
ℝ) |
| 45 | | nngt0 9032 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℕ → 0 <
𝑧) |
| 46 | 45 | adantr 276 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0)
→ 0 < 𝑧) |
| 47 | | nn0ge0 9291 |
. . . . . . . . . 10
⊢ (-𝑧 ∈ ℕ0
→ 0 ≤ -𝑧) |
| 48 | 47 | adantl 277 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0)
→ 0 ≤ -𝑧) |
| 49 | 44 | le0neg1d 8561 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0)
→ (𝑧 ≤ 0 ↔ 0
≤ -𝑧)) |
| 50 | 48, 49 | mpbird 167 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0)
→ 𝑧 ≤
0) |
| 51 | 42, 44, 42, 46, 50 | ltletrd 8467 |
. . . . . . 7
⊢ ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0)
→ 0 < 0) |
| 52 | 42 | ltnrd 8155 |
. . . . . . 7
⊢ ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0)
→ ¬ 0 < 0) |
| 53 | 51, 52 | pm2.65da 662 |
. . . . . 6
⊢ (𝑧 ∈ ℕ → ¬
-𝑧 ∈
ℕ0) |
| 54 | 53, 4 | eleq2s 2291 |
. . . . 5
⊢ (𝑧 ∈ (ℤ ∩ ℕ)
→ ¬ -𝑧 ∈
ℕ0) |
| 55 | 41, 54 | mprgbir 2555 |
. . . 4
⊢ {𝑧 ∈ (ℤ ∩ ℕ)
∣ -𝑧 ∈
ℕ0} = ∅ |
| 56 | 39, 40, 55 | 3eqtr3i 2225 |
. . 3
⊢ (ℕ
∩ {𝑧 ∈ ℤ
∣ -𝑧 ∈
ℕ0}) = ∅ |
| 57 | | unennn 12639 |
. . 3
⊢ ((ℕ
≈ ℕ ∧ {𝑧
∈ ℤ ∣ -𝑧
∈ ℕ0} ≈ ℕ ∧ (ℕ ∩ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) =
∅) → (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) ≈
ℕ) |
| 58 | 14, 38, 56, 57 | mp3an 1348 |
. 2
⊢ (ℕ
∪ {𝑧 ∈ ℤ
∣ -𝑧 ∈
ℕ0}) ≈ ℕ |
| 59 | 12, 58 | eqbrtri 4055 |
1
⊢ ℤ
≈ ℕ |