ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znnen GIF version

Theorem znnen 12382
Description: The set of integers and the set of positive integers are equinumerous. Corollary 8.1.23 of [AczelRathjen], p. 75. (Contributed by NM, 31-Jul-2004.)
Assertion
Ref Expression
znnen ℤ ≈ ℕ

Proof of Theorem znnen
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unrab 3406 . . 3 ({𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ} ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = {𝑧 ∈ ℤ ∣ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)}
2 nnssz 9259 . . . . . 6 ℕ ⊆ ℤ
3 dfss1 3339 . . . . . 6 (ℕ ⊆ ℤ ↔ (ℤ ∩ ℕ) = ℕ)
42, 3mpbi 145 . . . . 5 (ℤ ∩ ℕ) = ℕ
5 dfin5 3136 . . . . 5 (ℤ ∩ ℕ) = {𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ}
64, 5eqtr3i 2200 . . . 4 ℕ = {𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ}
76uneq1i 3285 . . 3 (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = ({𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ} ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
8 rabid2 2653 . . . 4 (ℤ = {𝑧 ∈ ℤ ∣ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)} ↔ ∀𝑧 ∈ ℤ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0))
9 elznn 9258 . . . . 5 (𝑧 ∈ ℤ ↔ (𝑧 ∈ ℝ ∧ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)))
109simprbi 275 . . . 4 (𝑧 ∈ ℤ → (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0))
118, 10mprgbir 2535 . . 3 ℤ = {𝑧 ∈ ℤ ∣ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)}
121, 7, 113eqtr4ri 2209 . 2 ℤ = (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
13 nnex 8914 . . . 4 ℕ ∈ V
1413enref 6759 . . 3 ℕ ≈ ℕ
15 zex 9251 . . . . . 6 ℤ ∈ V
1615rabex 4144 . . . . 5 {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∈ V
17 nn0ex 9171 . . . . 5 0 ∈ V
18 negeq 8140 . . . . . . . 8 (𝑧 = 𝑥 → -𝑧 = -𝑥)
1918eleq1d 2246 . . . . . . 7 (𝑧 = 𝑥 → (-𝑧 ∈ ℕ0 ↔ -𝑥 ∈ ℕ0))
2019elrab 2893 . . . . . 6 (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ↔ (𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0))
2120simprbi 275 . . . . 5 (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} → -𝑥 ∈ ℕ0)
22 negeq 8140 . . . . . . 7 (𝑧 = -𝑦 → -𝑧 = --𝑦)
2322eleq1d 2246 . . . . . 6 (𝑧 = -𝑦 → (-𝑧 ∈ ℕ0 ↔ --𝑦 ∈ ℕ0))
24 nn0negz 9276 . . . . . 6 (𝑦 ∈ ℕ0 → -𝑦 ∈ ℤ)
25 nn0cn 9175 . . . . . . . . 9 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
2625negnegd 8249 . . . . . . . 8 (𝑦 ∈ ℕ0 → --𝑦 = 𝑦)
2726eleq1d 2246 . . . . . . 7 (𝑦 ∈ ℕ0 → (--𝑦 ∈ ℕ0𝑦 ∈ ℕ0))
2827ibir 177 . . . . . 6 (𝑦 ∈ ℕ0 → --𝑦 ∈ ℕ0)
2923, 24, 28elrabd 2895 . . . . 5 (𝑦 ∈ ℕ0 → -𝑦 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
30 elrabi 2890 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} → 𝑥 ∈ ℤ)
3130adantr 276 . . . . . . 7 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℤ)
3231zcnd 9365 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℂ)
3325adantl 277 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℂ)
34 negcon2 8200 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
3532, 33, 34syl2anc 411 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → (𝑥 = -𝑦𝑦 = -𝑥))
3616, 17, 21, 29, 35en3i 6765 . . . 4 {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ≈ ℕ0
37 nn0ennn 10419 . . . 4 0 ≈ ℕ
3836, 37entri 6780 . . 3 {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ≈ ℕ
39 inrab2 3408 . . . 4 ({𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∩ ℕ) = {𝑧 ∈ (ℤ ∩ ℕ) ∣ -𝑧 ∈ ℕ0}
40 incom 3327 . . . 4 ({𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∩ ℕ) = (ℕ ∩ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
41 rabeq0 3452 . . . . 5 ({𝑧 ∈ (ℤ ∩ ℕ) ∣ -𝑧 ∈ ℕ0} = ∅ ↔ ∀𝑧 ∈ (ℤ ∩ ℕ) ¬ -𝑧 ∈ ℕ0)
42 0red 7949 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 ∈ ℝ)
43 simpl 109 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 𝑧 ∈ ℕ)
4443nnred 8921 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 𝑧 ∈ ℝ)
45 nngt0 8933 . . . . . . . . 9 (𝑧 ∈ ℕ → 0 < 𝑧)
4645adantr 276 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 < 𝑧)
47 nn0ge0 9190 . . . . . . . . . 10 (-𝑧 ∈ ℕ0 → 0 ≤ -𝑧)
4847adantl 277 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 ≤ -𝑧)
4944le0neg1d 8464 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → (𝑧 ≤ 0 ↔ 0 ≤ -𝑧))
5048, 49mpbird 167 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 𝑧 ≤ 0)
5142, 44, 42, 46, 50ltletrd 8370 . . . . . . 7 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 < 0)
5242ltnrd 8059 . . . . . . 7 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → ¬ 0 < 0)
5351, 52pm2.65da 661 . . . . . 6 (𝑧 ∈ ℕ → ¬ -𝑧 ∈ ℕ0)
5453, 4eleq2s 2272 . . . . 5 (𝑧 ∈ (ℤ ∩ ℕ) → ¬ -𝑧 ∈ ℕ0)
5541, 54mprgbir 2535 . . . 4 {𝑧 ∈ (ℤ ∩ ℕ) ∣ -𝑧 ∈ ℕ0} = ∅
5639, 40, 553eqtr3i 2206 . . 3 (ℕ ∩ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = ∅
57 unennn 12381 . . 3 ((ℕ ≈ ℕ ∧ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ≈ ℕ ∧ (ℕ ∩ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = ∅) → (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) ≈ ℕ)
5814, 38, 56, 57mp3an 1337 . 2 (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) ≈ ℕ
5912, 58eqbrtri 4021 1 ℤ ≈ ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 708   = wceq 1353  wcel 2148  {crab 2459  cun 3127  cin 3128  wss 3129  c0 3422   class class class wbr 4000  cen 6732  cc 7800  cr 7801  0cc0 7802   < clt 7982  cle 7983  -cneg 8119  cn 8908  0cn0 9165  cz 9242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-er 6529  df-en 6735  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-n0 9166  df-z 9243  df-q 9609  df-rp 9641  df-fl 10256  df-mod 10309  df-dvds 11779
This theorem is referenced by:  qnnen  12415
  Copyright terms: Public domain W3C validator