ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znnen GIF version

Theorem znnen 12711
Description: The set of integers and the set of positive integers are equinumerous. Corollary 8.1.23 of [AczelRathjen], p. 75. (Contributed by NM, 31-Jul-2004.)
Assertion
Ref Expression
znnen ℤ ≈ ℕ

Proof of Theorem znnen
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unrab 3443 . . 3 ({𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ} ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = {𝑧 ∈ ℤ ∣ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)}
2 nnssz 9388 . . . . . 6 ℕ ⊆ ℤ
3 dfss1 3376 . . . . . 6 (ℕ ⊆ ℤ ↔ (ℤ ∩ ℕ) = ℕ)
42, 3mpbi 145 . . . . 5 (ℤ ∩ ℕ) = ℕ
5 dfin5 3172 . . . . 5 (ℤ ∩ ℕ) = {𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ}
64, 5eqtr3i 2227 . . . 4 ℕ = {𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ}
76uneq1i 3322 . . 3 (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = ({𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ} ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
8 rabid2 2682 . . . 4 (ℤ = {𝑧 ∈ ℤ ∣ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)} ↔ ∀𝑧 ∈ ℤ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0))
9 elznn 9387 . . . . 5 (𝑧 ∈ ℤ ↔ (𝑧 ∈ ℝ ∧ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)))
109simprbi 275 . . . 4 (𝑧 ∈ ℤ → (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0))
118, 10mprgbir 2563 . . 3 ℤ = {𝑧 ∈ ℤ ∣ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)}
121, 7, 113eqtr4ri 2236 . 2 ℤ = (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
13 nnex 9041 . . . 4 ℕ ∈ V
1413enref 6855 . . 3 ℕ ≈ ℕ
15 zex 9380 . . . . . 6 ℤ ∈ V
1615rabex 4187 . . . . 5 {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∈ V
17 nn0ex 9300 . . . . 5 0 ∈ V
18 negeq 8264 . . . . . . . 8 (𝑧 = 𝑥 → -𝑧 = -𝑥)
1918eleq1d 2273 . . . . . . 7 (𝑧 = 𝑥 → (-𝑧 ∈ ℕ0 ↔ -𝑥 ∈ ℕ0))
2019elrab 2928 . . . . . 6 (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ↔ (𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0))
2120simprbi 275 . . . . 5 (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} → -𝑥 ∈ ℕ0)
22 negeq 8264 . . . . . . 7 (𝑧 = -𝑦 → -𝑧 = --𝑦)
2322eleq1d 2273 . . . . . 6 (𝑧 = -𝑦 → (-𝑧 ∈ ℕ0 ↔ --𝑦 ∈ ℕ0))
24 nn0negz 9405 . . . . . 6 (𝑦 ∈ ℕ0 → -𝑦 ∈ ℤ)
25 nn0cn 9304 . . . . . . . . 9 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
2625negnegd 8373 . . . . . . . 8 (𝑦 ∈ ℕ0 → --𝑦 = 𝑦)
2726eleq1d 2273 . . . . . . 7 (𝑦 ∈ ℕ0 → (--𝑦 ∈ ℕ0𝑦 ∈ ℕ0))
2827ibir 177 . . . . . 6 (𝑦 ∈ ℕ0 → --𝑦 ∈ ℕ0)
2923, 24, 28elrabd 2930 . . . . 5 (𝑦 ∈ ℕ0 → -𝑦 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
30 elrabi 2925 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} → 𝑥 ∈ ℤ)
3130adantr 276 . . . . . . 7 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℤ)
3231zcnd 9495 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℂ)
3325adantl 277 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℂ)
34 negcon2 8324 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
3532, 33, 34syl2anc 411 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → (𝑥 = -𝑦𝑦 = -𝑥))
3616, 17, 21, 29, 35en3i 6861 . . . 4 {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ≈ ℕ0
37 nn0ennn 10576 . . . 4 0 ≈ ℕ
3836, 37entri 6877 . . 3 {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ≈ ℕ
39 inrab2 3445 . . . 4 ({𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∩ ℕ) = {𝑧 ∈ (ℤ ∩ ℕ) ∣ -𝑧 ∈ ℕ0}
40 incom 3364 . . . 4 ({𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∩ ℕ) = (ℕ ∩ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
41 rabeq0 3489 . . . . 5 ({𝑧 ∈ (ℤ ∩ ℕ) ∣ -𝑧 ∈ ℕ0} = ∅ ↔ ∀𝑧 ∈ (ℤ ∩ ℕ) ¬ -𝑧 ∈ ℕ0)
42 0red 8072 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 ∈ ℝ)
43 simpl 109 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 𝑧 ∈ ℕ)
4443nnred 9048 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 𝑧 ∈ ℝ)
45 nngt0 9060 . . . . . . . . 9 (𝑧 ∈ ℕ → 0 < 𝑧)
4645adantr 276 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 < 𝑧)
47 nn0ge0 9319 . . . . . . . . . 10 (-𝑧 ∈ ℕ0 → 0 ≤ -𝑧)
4847adantl 277 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 ≤ -𝑧)
4944le0neg1d 8589 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → (𝑧 ≤ 0 ↔ 0 ≤ -𝑧))
5048, 49mpbird 167 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 𝑧 ≤ 0)
5142, 44, 42, 46, 50ltletrd 8495 . . . . . . 7 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 < 0)
5242ltnrd 8183 . . . . . . 7 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → ¬ 0 < 0)
5351, 52pm2.65da 662 . . . . . 6 (𝑧 ∈ ℕ → ¬ -𝑧 ∈ ℕ0)
5453, 4eleq2s 2299 . . . . 5 (𝑧 ∈ (ℤ ∩ ℕ) → ¬ -𝑧 ∈ ℕ0)
5541, 54mprgbir 2563 . . . 4 {𝑧 ∈ (ℤ ∩ ℕ) ∣ -𝑧 ∈ ℕ0} = ∅
5639, 40, 553eqtr3i 2233 . . 3 (ℕ ∩ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = ∅
57 unennn 12710 . . 3 ((ℕ ≈ ℕ ∧ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ≈ ℕ ∧ (ℕ ∩ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = ∅) → (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) ≈ ℕ)
5814, 38, 56, 57mp3an 1349 . 2 (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) ≈ ℕ
5912, 58eqbrtri 4064 1 ℤ ≈ ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 709   = wceq 1372  wcel 2175  {crab 2487  cun 3163  cin 3164  wss 3165  c0 3459   class class class wbr 4043  cen 6824  cc 7922  cr 7923  0cc0 7924   < clt 8106  cle 8107  -cneg 8243  cn 9035  0cn0 9294  cz 9371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-xor 1395  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-er 6619  df-en 6827  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-n0 9295  df-z 9372  df-q 9740  df-rp 9775  df-fl 10411  df-mod 10466  df-dvds 12041
This theorem is referenced by:  qnnen  12744
  Copyright terms: Public domain W3C validator