ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znnen GIF version

Theorem znnen 12615
Description: The set of integers and the set of positive integers are equinumerous. Corollary 8.1.23 of [AczelRathjen], p. 75. (Contributed by NM, 31-Jul-2004.)
Assertion
Ref Expression
znnen ℤ ≈ ℕ

Proof of Theorem znnen
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unrab 3434 . . 3 ({𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ} ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = {𝑧 ∈ ℤ ∣ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)}
2 nnssz 9343 . . . . . 6 ℕ ⊆ ℤ
3 dfss1 3367 . . . . . 6 (ℕ ⊆ ℤ ↔ (ℤ ∩ ℕ) = ℕ)
42, 3mpbi 145 . . . . 5 (ℤ ∩ ℕ) = ℕ
5 dfin5 3164 . . . . 5 (ℤ ∩ ℕ) = {𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ}
64, 5eqtr3i 2219 . . . 4 ℕ = {𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ}
76uneq1i 3313 . . 3 (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = ({𝑧 ∈ ℤ ∣ 𝑧 ∈ ℕ} ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
8 rabid2 2674 . . . 4 (ℤ = {𝑧 ∈ ℤ ∣ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)} ↔ ∀𝑧 ∈ ℤ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0))
9 elznn 9342 . . . . 5 (𝑧 ∈ ℤ ↔ (𝑧 ∈ ℝ ∧ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)))
109simprbi 275 . . . 4 (𝑧 ∈ ℤ → (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0))
118, 10mprgbir 2555 . . 3 ℤ = {𝑧 ∈ ℤ ∣ (𝑧 ∈ ℕ ∨ -𝑧 ∈ ℕ0)}
121, 7, 113eqtr4ri 2228 . 2 ℤ = (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
13 nnex 8996 . . . 4 ℕ ∈ V
1413enref 6824 . . 3 ℕ ≈ ℕ
15 zex 9335 . . . . . 6 ℤ ∈ V
1615rabex 4177 . . . . 5 {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∈ V
17 nn0ex 9255 . . . . 5 0 ∈ V
18 negeq 8219 . . . . . . . 8 (𝑧 = 𝑥 → -𝑧 = -𝑥)
1918eleq1d 2265 . . . . . . 7 (𝑧 = 𝑥 → (-𝑧 ∈ ℕ0 ↔ -𝑥 ∈ ℕ0))
2019elrab 2920 . . . . . 6 (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ↔ (𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0))
2120simprbi 275 . . . . 5 (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} → -𝑥 ∈ ℕ0)
22 negeq 8219 . . . . . . 7 (𝑧 = -𝑦 → -𝑧 = --𝑦)
2322eleq1d 2265 . . . . . 6 (𝑧 = -𝑦 → (-𝑧 ∈ ℕ0 ↔ --𝑦 ∈ ℕ0))
24 nn0negz 9360 . . . . . 6 (𝑦 ∈ ℕ0 → -𝑦 ∈ ℤ)
25 nn0cn 9259 . . . . . . . . 9 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
2625negnegd 8328 . . . . . . . 8 (𝑦 ∈ ℕ0 → --𝑦 = 𝑦)
2726eleq1d 2265 . . . . . . 7 (𝑦 ∈ ℕ0 → (--𝑦 ∈ ℕ0𝑦 ∈ ℕ0))
2827ibir 177 . . . . . 6 (𝑦 ∈ ℕ0 → --𝑦 ∈ ℕ0)
2923, 24, 28elrabd 2922 . . . . 5 (𝑦 ∈ ℕ0 → -𝑦 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
30 elrabi 2917 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} → 𝑥 ∈ ℤ)
3130adantr 276 . . . . . . 7 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℤ)
3231zcnd 9449 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℂ)
3325adantl 277 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℂ)
34 negcon2 8279 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
3532, 33, 34syl2anc 411 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∧ 𝑦 ∈ ℕ0) → (𝑥 = -𝑦𝑦 = -𝑥))
3616, 17, 21, 29, 35en3i 6830 . . . 4 {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ≈ ℕ0
37 nn0ennn 10525 . . . 4 0 ≈ ℕ
3836, 37entri 6845 . . 3 {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ≈ ℕ
39 inrab2 3436 . . . 4 ({𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∩ ℕ) = {𝑧 ∈ (ℤ ∩ ℕ) ∣ -𝑧 ∈ ℕ0}
40 incom 3355 . . . 4 ({𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ∩ ℕ) = (ℕ ∩ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0})
41 rabeq0 3480 . . . . 5 ({𝑧 ∈ (ℤ ∩ ℕ) ∣ -𝑧 ∈ ℕ0} = ∅ ↔ ∀𝑧 ∈ (ℤ ∩ ℕ) ¬ -𝑧 ∈ ℕ0)
42 0red 8027 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 ∈ ℝ)
43 simpl 109 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 𝑧 ∈ ℕ)
4443nnred 9003 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 𝑧 ∈ ℝ)
45 nngt0 9015 . . . . . . . . 9 (𝑧 ∈ ℕ → 0 < 𝑧)
4645adantr 276 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 < 𝑧)
47 nn0ge0 9274 . . . . . . . . . 10 (-𝑧 ∈ ℕ0 → 0 ≤ -𝑧)
4847adantl 277 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 ≤ -𝑧)
4944le0neg1d 8544 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → (𝑧 ≤ 0 ↔ 0 ≤ -𝑧))
5048, 49mpbird 167 . . . . . . . 8 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 𝑧 ≤ 0)
5142, 44, 42, 46, 50ltletrd 8450 . . . . . . 7 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → 0 < 0)
5242ltnrd 8138 . . . . . . 7 ((𝑧 ∈ ℕ ∧ -𝑧 ∈ ℕ0) → ¬ 0 < 0)
5351, 52pm2.65da 662 . . . . . 6 (𝑧 ∈ ℕ → ¬ -𝑧 ∈ ℕ0)
5453, 4eleq2s 2291 . . . . 5 (𝑧 ∈ (ℤ ∩ ℕ) → ¬ -𝑧 ∈ ℕ0)
5541, 54mprgbir 2555 . . . 4 {𝑧 ∈ (ℤ ∩ ℕ) ∣ -𝑧 ∈ ℕ0} = ∅
5639, 40, 553eqtr3i 2225 . . 3 (ℕ ∩ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = ∅
57 unennn 12614 . . 3 ((ℕ ≈ ℕ ∧ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0} ≈ ℕ ∧ (ℕ ∩ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) = ∅) → (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) ≈ ℕ)
5814, 38, 56, 57mp3an 1348 . 2 (ℕ ∪ {𝑧 ∈ ℤ ∣ -𝑧 ∈ ℕ0}) ≈ ℕ
5912, 58eqbrtri 4054 1 ℤ ≈ ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  {crab 2479  cun 3155  cin 3156  wss 3157  c0 3450   class class class wbr 4033  cen 6797  cc 7877  cr 7878  0cc0 7879   < clt 8061  cle 8062  -cneg 8198  cn 8990  0cn0 9249  cz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-er 6592  df-en 6800  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-q 9694  df-rp 9729  df-fl 10360  df-mod 10415  df-dvds 11953
This theorem is referenced by:  qnnen  12648
  Copyright terms: Public domain W3C validator