ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprzubdc GIF version

Theorem suprzubdc 11936
Description: The supremum of a bounded-above decidable set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.)
Hypotheses
Ref Expression
suprzubdc.ss (𝜑𝐴 ⊆ ℤ)
suprzubdc.dc (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
suprzubdc.ub (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
suprzubdc.b (𝜑𝐵𝐴)
Assertion
Ref Expression
suprzubdc (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
Distinct variable groups:   𝑦,𝐴,𝑥   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem suprzubdc
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suprzubdc.ub . . 3 (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
2 breq2 4004 . . . . 5 (𝑥 = 𝑢 → (𝑦𝑥𝑦𝑢))
32ralbidv 2477 . . . 4 (𝑥 = 𝑢 → (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑦𝐴 𝑦𝑢))
43cbvrexv 2704 . . 3 (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥 ↔ ∃𝑢 ∈ ℤ ∀𝑦𝐴 𝑦𝑢)
51, 4sylib 122 . 2 (𝜑 → ∃𝑢 ∈ ℤ ∀𝑦𝐴 𝑦𝑢)
6 dfin5 3136 . . . . . . 7 (ℤ ∩ 𝐴) = {𝑧 ∈ ℤ ∣ 𝑧𝐴}
7 suprzubdc.ss . . . . . . . 8 (𝜑𝐴 ⊆ ℤ)
8 sseqin2 3354 . . . . . . . 8 (𝐴 ⊆ ℤ ↔ (ℤ ∩ 𝐴) = 𝐴)
97, 8sylib 122 . . . . . . 7 (𝜑 → (ℤ ∩ 𝐴) = 𝐴)
106, 9eqtr3id 2224 . . . . . 6 (𝜑 → {𝑧 ∈ ℤ ∣ 𝑧𝐴} = 𝐴)
1110supeq1d 6980 . . . . 5 (𝜑 → sup({𝑧 ∈ ℤ ∣ 𝑧𝐴}, ℝ, < ) = sup(𝐴, ℝ, < ))
1211adantr 276 . . . 4 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → sup({𝑧 ∈ ℤ ∣ 𝑧𝐴}, ℝ, < ) = sup(𝐴, ℝ, < ))
13 suprzubdc.b . . . . . . 7 (𝜑𝐵𝐴)
147, 13sseldd 3156 . . . . . 6 (𝜑𝐵 ∈ ℤ)
1514adantr 276 . . . . 5 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵 ∈ ℤ)
16 eleq1 2240 . . . . 5 (𝑧 = 𝐵 → (𝑧𝐴𝐵𝐴))
1713adantr 276 . . . . 5 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵𝐴)
18 eleq1w 2238 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1918dcbid 838 . . . . . 6 (𝑥 = 𝑧 → (DECID 𝑥𝐴DECID 𝑧𝐴))
20 suprzubdc.dc . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
2120ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ𝐵)) → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
22 eluzelz 9526 . . . . . . 7 (𝑧 ∈ (ℤ𝐵) → 𝑧 ∈ ℤ)
2322adantl 277 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ𝐵)) → 𝑧 ∈ ℤ)
2419, 21, 23rspcdva 2846 . . . . 5 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ𝐵)) → DECID 𝑧𝐴)
25 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝑢 ∈ ℤ)
2625peano2zd 9367 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → (𝑢 + 1) ∈ ℤ)
2715zred 9364 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵 ∈ ℝ)
2825zred 9364 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝑢 ∈ ℝ)
2926zred 9364 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → (𝑢 + 1) ∈ ℝ)
30 breq1 4003 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑦𝑢𝐵𝑢))
31 simprr 531 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → ∀𝑦𝐴 𝑦𝑢)
3230, 31, 17rspcdva 2846 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵𝑢)
3328lep1d 8877 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝑢 ≤ (𝑢 + 1))
3427, 28, 29, 32, 33letrd 8071 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵 ≤ (𝑢 + 1))
35 eluz2 9523 . . . . . . 7 ((𝑢 + 1) ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ (𝑢 + 1) ∈ ℤ ∧ 𝐵 ≤ (𝑢 + 1)))
3615, 26, 34, 35syl3anbrc 1181 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → (𝑢 + 1) ∈ (ℤ𝐵))
37 eluzle 9529 . . . . . . . . . 10 (𝑧 ∈ (ℤ‘(𝑢 + 1)) → (𝑢 + 1) ≤ 𝑧)
3837ad2antlr 489 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → (𝑢 + 1) ≤ 𝑧)
3925ad2antrr 488 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑢 ∈ ℤ)
40 eluzelz 9526 . . . . . . . . . . 11 (𝑧 ∈ (ℤ‘(𝑢 + 1)) → 𝑧 ∈ ℤ)
4140ad2antlr 489 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑧 ∈ ℤ)
42 zltp1le 9296 . . . . . . . . . 10 ((𝑢 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑢 < 𝑧 ↔ (𝑢 + 1) ≤ 𝑧))
4339, 41, 42syl2anc 411 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → (𝑢 < 𝑧 ↔ (𝑢 + 1) ≤ 𝑧))
4438, 43mpbird 167 . . . . . . . 8 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑢 < 𝑧)
4541zred 9364 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
4628ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑢 ∈ ℝ)
47 breq1 4003 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦𝑢𝑧𝑢))
4831ad2antrr 488 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → ∀𝑦𝐴 𝑦𝑢)
49 simpr 110 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑧𝐴)
5047, 48, 49rspcdva 2846 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑧𝑢)
5145, 46, 50lensymd 8069 . . . . . . . 8 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → ¬ 𝑢 < 𝑧)
5244, 51pm2.65da 661 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) → ¬ 𝑧𝐴)
5352ralrimiva 2550 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → ∀𝑧 ∈ (ℤ‘(𝑢 + 1)) ¬ 𝑧𝐴)
54 fveq2 5511 . . . . . . . 8 (𝑣 = (𝑢 + 1) → (ℤ𝑣) = (ℤ‘(𝑢 + 1)))
5554raleqdv 2678 . . . . . . 7 (𝑣 = (𝑢 + 1) → (∀𝑧 ∈ (ℤ𝑣) ¬ 𝑧𝐴 ↔ ∀𝑧 ∈ (ℤ‘(𝑢 + 1)) ¬ 𝑧𝐴))
5655rspcev 2841 . . . . . 6 (((𝑢 + 1) ∈ (ℤ𝐵) ∧ ∀𝑧 ∈ (ℤ‘(𝑢 + 1)) ¬ 𝑧𝐴) → ∃𝑣 ∈ (ℤ𝐵)∀𝑧 ∈ (ℤ𝑣) ¬ 𝑧𝐴)
5736, 53, 56syl2anc 411 . . . . 5 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → ∃𝑣 ∈ (ℤ𝐵)∀𝑧 ∈ (ℤ𝑣) ¬ 𝑧𝐴)
5815, 16, 17, 24, 57zsupcl 11931 . . . 4 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → sup({𝑧 ∈ ℤ ∣ 𝑧𝐴}, ℝ, < ) ∈ (ℤ𝐵))
5912, 58eqeltrrd 2255 . . 3 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → sup(𝐴, ℝ, < ) ∈ (ℤ𝐵))
60 eluzle 9529 . . 3 (sup(𝐴, ℝ, < ) ∈ (ℤ𝐵) → 𝐵 ≤ sup(𝐴, ℝ, < ))
6159, 60syl 14 . 2 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵 ≤ sup(𝐴, ℝ, < ))
625, 61rexlimddv 2599 1 (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 834   = wceq 1353  wcel 2148  wral 2455  wrex 2456  {crab 2459  cin 3128  wss 3129   class class class wbr 4000  cfv 5212  (class class class)co 5869  supcsup 6975  cr 7801  1c1 7803   + caddc 7805   < clt 7982  cle 7983  cz 9242  cuz 9517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996  df-fzo 10129
This theorem is referenced by:  pcprendvds  12273  pcpremul  12276
  Copyright terms: Public domain W3C validator