ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprzubdc GIF version

Theorem suprzubdc 10392
Description: The supremum of a bounded-above decidable set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.)
Hypotheses
Ref Expression
suprzubdc.ss (𝜑𝐴 ⊆ ℤ)
suprzubdc.dc (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
suprzubdc.ub (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
suprzubdc.b (𝜑𝐵𝐴)
Assertion
Ref Expression
suprzubdc (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
Distinct variable groups:   𝑦,𝐴,𝑥   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem suprzubdc
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suprzubdc.ub . . 3 (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
2 breq2 4052 . . . . 5 (𝑥 = 𝑢 → (𝑦𝑥𝑦𝑢))
32ralbidv 2507 . . . 4 (𝑥 = 𝑢 → (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑦𝐴 𝑦𝑢))
43cbvrexv 2740 . . 3 (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥 ↔ ∃𝑢 ∈ ℤ ∀𝑦𝐴 𝑦𝑢)
51, 4sylib 122 . 2 (𝜑 → ∃𝑢 ∈ ℤ ∀𝑦𝐴 𝑦𝑢)
6 dfin5 3175 . . . . . . 7 (ℤ ∩ 𝐴) = {𝑧 ∈ ℤ ∣ 𝑧𝐴}
7 suprzubdc.ss . . . . . . . 8 (𝜑𝐴 ⊆ ℤ)
8 sseqin2 3394 . . . . . . . 8 (𝐴 ⊆ ℤ ↔ (ℤ ∩ 𝐴) = 𝐴)
97, 8sylib 122 . . . . . . 7 (𝜑 → (ℤ ∩ 𝐴) = 𝐴)
106, 9eqtr3id 2253 . . . . . 6 (𝜑 → {𝑧 ∈ ℤ ∣ 𝑧𝐴} = 𝐴)
1110supeq1d 7101 . . . . 5 (𝜑 → sup({𝑧 ∈ ℤ ∣ 𝑧𝐴}, ℝ, < ) = sup(𝐴, ℝ, < ))
1211adantr 276 . . . 4 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → sup({𝑧 ∈ ℤ ∣ 𝑧𝐴}, ℝ, < ) = sup(𝐴, ℝ, < ))
13 suprzubdc.b . . . . . . 7 (𝜑𝐵𝐴)
147, 13sseldd 3196 . . . . . 6 (𝜑𝐵 ∈ ℤ)
1514adantr 276 . . . . 5 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵 ∈ ℤ)
16 eleq1 2269 . . . . 5 (𝑧 = 𝐵 → (𝑧𝐴𝐵𝐴))
1713adantr 276 . . . . 5 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵𝐴)
18 eleq1w 2267 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1918dcbid 840 . . . . . 6 (𝑥 = 𝑧 → (DECID 𝑥𝐴DECID 𝑧𝐴))
20 suprzubdc.dc . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
2120ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ𝐵)) → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
22 eluzelz 9670 . . . . . . 7 (𝑧 ∈ (ℤ𝐵) → 𝑧 ∈ ℤ)
2322adantl 277 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ𝐵)) → 𝑧 ∈ ℤ)
2419, 21, 23rspcdva 2884 . . . . 5 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ𝐵)) → DECID 𝑧𝐴)
25 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝑢 ∈ ℤ)
2625peano2zd 9511 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → (𝑢 + 1) ∈ ℤ)
2715zred 9508 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵 ∈ ℝ)
2825zred 9508 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝑢 ∈ ℝ)
2926zred 9508 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → (𝑢 + 1) ∈ ℝ)
30 breq1 4051 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑦𝑢𝐵𝑢))
31 simprr 531 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → ∀𝑦𝐴 𝑦𝑢)
3230, 31, 17rspcdva 2884 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵𝑢)
3328lep1d 9017 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝑢 ≤ (𝑢 + 1))
3427, 28, 29, 32, 33letrd 8209 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵 ≤ (𝑢 + 1))
35 eluz2 9667 . . . . . . 7 ((𝑢 + 1) ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ (𝑢 + 1) ∈ ℤ ∧ 𝐵 ≤ (𝑢 + 1)))
3615, 26, 34, 35syl3anbrc 1184 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → (𝑢 + 1) ∈ (ℤ𝐵))
37 eluzle 9673 . . . . . . . . . 10 (𝑧 ∈ (ℤ‘(𝑢 + 1)) → (𝑢 + 1) ≤ 𝑧)
3837ad2antlr 489 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → (𝑢 + 1) ≤ 𝑧)
3925ad2antrr 488 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑢 ∈ ℤ)
40 eluzelz 9670 . . . . . . . . . . 11 (𝑧 ∈ (ℤ‘(𝑢 + 1)) → 𝑧 ∈ ℤ)
4140ad2antlr 489 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑧 ∈ ℤ)
42 zltp1le 9440 . . . . . . . . . 10 ((𝑢 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑢 < 𝑧 ↔ (𝑢 + 1) ≤ 𝑧))
4339, 41, 42syl2anc 411 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → (𝑢 < 𝑧 ↔ (𝑢 + 1) ≤ 𝑧))
4438, 43mpbird 167 . . . . . . . 8 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑢 < 𝑧)
4541zred 9508 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
4628ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑢 ∈ ℝ)
47 breq1 4051 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦𝑢𝑧𝑢))
4831ad2antrr 488 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → ∀𝑦𝐴 𝑦𝑢)
49 simpr 110 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑧𝐴)
5047, 48, 49rspcdva 2884 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑧𝑢)
5145, 46, 50lensymd 8207 . . . . . . . 8 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → ¬ 𝑢 < 𝑧)
5244, 51pm2.65da 663 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) → ¬ 𝑧𝐴)
5352ralrimiva 2580 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → ∀𝑧 ∈ (ℤ‘(𝑢 + 1)) ¬ 𝑧𝐴)
54 fveq2 5586 . . . . . . . 8 (𝑣 = (𝑢 + 1) → (ℤ𝑣) = (ℤ‘(𝑢 + 1)))
5554raleqdv 2709 . . . . . . 7 (𝑣 = (𝑢 + 1) → (∀𝑧 ∈ (ℤ𝑣) ¬ 𝑧𝐴 ↔ ∀𝑧 ∈ (ℤ‘(𝑢 + 1)) ¬ 𝑧𝐴))
5655rspcev 2879 . . . . . 6 (((𝑢 + 1) ∈ (ℤ𝐵) ∧ ∀𝑧 ∈ (ℤ‘(𝑢 + 1)) ¬ 𝑧𝐴) → ∃𝑣 ∈ (ℤ𝐵)∀𝑧 ∈ (ℤ𝑣) ¬ 𝑧𝐴)
5736, 53, 56syl2anc 411 . . . . 5 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → ∃𝑣 ∈ (ℤ𝐵)∀𝑧 ∈ (ℤ𝑣) ¬ 𝑧𝐴)
5815, 16, 17, 24, 57zsupcl 10387 . . . 4 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → sup({𝑧 ∈ ℤ ∣ 𝑧𝐴}, ℝ, < ) ∈ (ℤ𝐵))
5912, 58eqeltrrd 2284 . . 3 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → sup(𝐴, ℝ, < ) ∈ (ℤ𝐵))
60 eluzle 9673 . . 3 (sup(𝐴, ℝ, < ) ∈ (ℤ𝐵) → 𝐵 ≤ sup(𝐴, ℝ, < ))
6159, 60syl 14 . 2 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵 ≤ sup(𝐴, ℝ, < ))
625, 61rexlimddv 2629 1 (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  wrex 2486  {crab 2489  cin 3167  wss 3168   class class class wbr 4048  cfv 5277  (class class class)co 5954  supcsup 7096  cr 7937  1c1 7939   + caddc 7941   < clt 8120  cle 8121  cz 9385  cuz 9661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-sup 7098  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-inn 9050  df-n0 9309  df-z 9386  df-uz 9662  df-fz 10144  df-fzo 10278
This theorem is referenced by:  pcprendvds  12663  pcpremul  12666
  Copyright terms: Public domain W3C validator