Step | Hyp | Ref
| Expression |
1 | | suprzubdc.ub |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
2 | | breq2 3985 |
. . . . 5
⊢ (𝑥 = 𝑢 → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ 𝑢)) |
3 | 2 | ralbidv 2465 |
. . . 4
⊢ (𝑥 = 𝑢 → (∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) |
4 | 3 | cbvrexv 2692 |
. . 3
⊢
(∃𝑥 ∈
ℤ ∀𝑦 ∈
𝐴 𝑦 ≤ 𝑥 ↔ ∃𝑢 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢) |
5 | 1, 4 | sylib 121 |
. 2
⊢ (𝜑 → ∃𝑢 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢) |
6 | | dfin5 3122 |
. . . . . . 7
⊢ (ℤ
∩ 𝐴) = {𝑧 ∈ ℤ ∣ 𝑧 ∈ 𝐴} |
7 | | suprzubdc.ss |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ ℤ) |
8 | | sseqin2 3340 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℤ ↔ (ℤ
∩ 𝐴) = 𝐴) |
9 | 7, 8 | sylib 121 |
. . . . . . 7
⊢ (𝜑 → (ℤ ∩ 𝐴) = 𝐴) |
10 | 6, 9 | eqtr3id 2212 |
. . . . . 6
⊢ (𝜑 → {𝑧 ∈ ℤ ∣ 𝑧 ∈ 𝐴} = 𝐴) |
11 | 10 | supeq1d 6948 |
. . . . 5
⊢ (𝜑 → sup({𝑧 ∈ ℤ ∣ 𝑧 ∈ 𝐴}, ℝ, < ) = sup(𝐴, ℝ, < )) |
12 | 11 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → sup({𝑧 ∈ ℤ ∣ 𝑧 ∈ 𝐴}, ℝ, < ) = sup(𝐴, ℝ, < )) |
13 | | suprzubdc.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝐴) |
14 | 7, 13 | sseldd 3142 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℤ) |
15 | 14 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → 𝐵 ∈ ℤ) |
16 | | eleq1 2228 |
. . . . 5
⊢ (𝑧 = 𝐵 → (𝑧 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) |
17 | 13 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → 𝐵 ∈ 𝐴) |
18 | | eleq1w 2226 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
19 | 18 | dcbid 828 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑧 ∈ 𝐴)) |
20 | | suprzubdc.dc |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
21 | 20 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘𝐵)) → ∀𝑥 ∈ ℤ
DECID 𝑥
∈ 𝐴) |
22 | | eluzelz 9471 |
. . . . . . 7
⊢ (𝑧 ∈
(ℤ≥‘𝐵) → 𝑧 ∈ ℤ) |
23 | 22 | adantl 275 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘𝐵)) → 𝑧 ∈ ℤ) |
24 | 19, 21, 23 | rspcdva 2834 |
. . . . 5
⊢ (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘𝐵)) → DECID
𝑧 ∈ 𝐴) |
25 | | simprl 521 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → 𝑢 ∈ ℤ) |
26 | 25 | peano2zd 9312 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → (𝑢 + 1) ∈ ℤ) |
27 | 15 | zred 9309 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → 𝐵 ∈ ℝ) |
28 | 25 | zred 9309 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → 𝑢 ∈ ℝ) |
29 | 26 | zred 9309 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → (𝑢 + 1) ∈ ℝ) |
30 | | breq1 3984 |
. . . . . . . . 9
⊢ (𝑦 = 𝐵 → (𝑦 ≤ 𝑢 ↔ 𝐵 ≤ 𝑢)) |
31 | | simprr 522 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢) |
32 | 30, 31, 17 | rspcdva 2834 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → 𝐵 ≤ 𝑢) |
33 | 28 | lep1d 8822 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → 𝑢 ≤ (𝑢 + 1)) |
34 | 27, 28, 29, 32, 33 | letrd 8018 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → 𝐵 ≤ (𝑢 + 1)) |
35 | | eluz2 9468 |
. . . . . . 7
⊢ ((𝑢 + 1) ∈
(ℤ≥‘𝐵) ↔ (𝐵 ∈ ℤ ∧ (𝑢 + 1) ∈ ℤ ∧ 𝐵 ≤ (𝑢 + 1))) |
36 | 15, 26, 34, 35 | syl3anbrc 1171 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → (𝑢 + 1) ∈
(ℤ≥‘𝐵)) |
37 | | eluzle 9474 |
. . . . . . . . . 10
⊢ (𝑧 ∈
(ℤ≥‘(𝑢 + 1)) → (𝑢 + 1) ≤ 𝑧) |
38 | 37 | ad2antlr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → (𝑢 + 1) ≤ 𝑧) |
39 | 25 | ad2antrr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → 𝑢 ∈ ℤ) |
40 | | eluzelz 9471 |
. . . . . . . . . . 11
⊢ (𝑧 ∈
(ℤ≥‘(𝑢 + 1)) → 𝑧 ∈ ℤ) |
41 | 40 | ad2antlr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℤ) |
42 | | zltp1le 9241 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑢 < 𝑧 ↔ (𝑢 + 1) ≤ 𝑧)) |
43 | 39, 41, 42 | syl2anc 409 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → (𝑢 < 𝑧 ↔ (𝑢 + 1) ≤ 𝑧)) |
44 | 38, 43 | mpbird 166 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → 𝑢 < 𝑧) |
45 | 41 | zred 9309 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ) |
46 | 28 | ad2antrr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → 𝑢 ∈ ℝ) |
47 | | breq1 3984 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝑦 ≤ 𝑢 ↔ 𝑧 ≤ 𝑢)) |
48 | 31 | ad2antrr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢) |
49 | | simpr 109 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) |
50 | 47, 48, 49 | rspcdva 2834 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ 𝑢) |
51 | 45, 46, 50 | lensymd 8016 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → ¬ 𝑢 < 𝑧) |
52 | 44, 51 | pm2.65da 651 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) → ¬ 𝑧 ∈ 𝐴) |
53 | 52 | ralrimiva 2538 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → ∀𝑧 ∈ (ℤ≥‘(𝑢 + 1)) ¬ 𝑧 ∈ 𝐴) |
54 | | fveq2 5485 |
. . . . . . . 8
⊢ (𝑣 = (𝑢 + 1) →
(ℤ≥‘𝑣) = (ℤ≥‘(𝑢 + 1))) |
55 | 54 | raleqdv 2666 |
. . . . . . 7
⊢ (𝑣 = (𝑢 + 1) → (∀𝑧 ∈ (ℤ≥‘𝑣) ¬ 𝑧 ∈ 𝐴 ↔ ∀𝑧 ∈ (ℤ≥‘(𝑢 + 1)) ¬ 𝑧 ∈ 𝐴)) |
56 | 55 | rspcev 2829 |
. . . . . 6
⊢ (((𝑢 + 1) ∈
(ℤ≥‘𝐵) ∧ ∀𝑧 ∈ (ℤ≥‘(𝑢 + 1)) ¬ 𝑧 ∈ 𝐴) → ∃𝑣 ∈ (ℤ≥‘𝐵)∀𝑧 ∈ (ℤ≥‘𝑣) ¬ 𝑧 ∈ 𝐴) |
57 | 36, 53, 56 | syl2anc 409 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → ∃𝑣 ∈ (ℤ≥‘𝐵)∀𝑧 ∈ (ℤ≥‘𝑣) ¬ 𝑧 ∈ 𝐴) |
58 | 15, 16, 17, 24, 57 | zsupcl 11876 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → sup({𝑧 ∈ ℤ ∣ 𝑧 ∈ 𝐴}, ℝ, < ) ∈
(ℤ≥‘𝐵)) |
59 | 12, 58 | eqeltrrd 2243 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → sup(𝐴, ℝ, < ) ∈
(ℤ≥‘𝐵)) |
60 | | eluzle 9474 |
. . 3
⊢
(sup(𝐴, ℝ,
< ) ∈ (ℤ≥‘𝐵) → 𝐵 ≤ sup(𝐴, ℝ, < )) |
61 | 59, 60 | syl 14 |
. 2
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → 𝐵 ≤ sup(𝐴, ℝ, < )) |
62 | 5, 61 | rexlimddv 2587 |
1
⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) |