ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprzubdc GIF version

Theorem suprzubdc 11881
Description: The supremum of a bounded-above decidable set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.)
Hypotheses
Ref Expression
suprzubdc.ss (𝜑𝐴 ⊆ ℤ)
suprzubdc.dc (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
suprzubdc.ub (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
suprzubdc.b (𝜑𝐵𝐴)
Assertion
Ref Expression
suprzubdc (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
Distinct variable groups:   𝑦,𝐴,𝑥   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem suprzubdc
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suprzubdc.ub . . 3 (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
2 breq2 3985 . . . . 5 (𝑥 = 𝑢 → (𝑦𝑥𝑦𝑢))
32ralbidv 2465 . . . 4 (𝑥 = 𝑢 → (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑦𝐴 𝑦𝑢))
43cbvrexv 2692 . . 3 (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥 ↔ ∃𝑢 ∈ ℤ ∀𝑦𝐴 𝑦𝑢)
51, 4sylib 121 . 2 (𝜑 → ∃𝑢 ∈ ℤ ∀𝑦𝐴 𝑦𝑢)
6 dfin5 3122 . . . . . . 7 (ℤ ∩ 𝐴) = {𝑧 ∈ ℤ ∣ 𝑧𝐴}
7 suprzubdc.ss . . . . . . . 8 (𝜑𝐴 ⊆ ℤ)
8 sseqin2 3340 . . . . . . . 8 (𝐴 ⊆ ℤ ↔ (ℤ ∩ 𝐴) = 𝐴)
97, 8sylib 121 . . . . . . 7 (𝜑 → (ℤ ∩ 𝐴) = 𝐴)
106, 9eqtr3id 2212 . . . . . 6 (𝜑 → {𝑧 ∈ ℤ ∣ 𝑧𝐴} = 𝐴)
1110supeq1d 6948 . . . . 5 (𝜑 → sup({𝑧 ∈ ℤ ∣ 𝑧𝐴}, ℝ, < ) = sup(𝐴, ℝ, < ))
1211adantr 274 . . . 4 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → sup({𝑧 ∈ ℤ ∣ 𝑧𝐴}, ℝ, < ) = sup(𝐴, ℝ, < ))
13 suprzubdc.b . . . . . . 7 (𝜑𝐵𝐴)
147, 13sseldd 3142 . . . . . 6 (𝜑𝐵 ∈ ℤ)
1514adantr 274 . . . . 5 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵 ∈ ℤ)
16 eleq1 2228 . . . . 5 (𝑧 = 𝐵 → (𝑧𝐴𝐵𝐴))
1713adantr 274 . . . . 5 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵𝐴)
18 eleq1w 2226 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1918dcbid 828 . . . . . 6 (𝑥 = 𝑧 → (DECID 𝑥𝐴DECID 𝑧𝐴))
20 suprzubdc.dc . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
2120ad2antrr 480 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ𝐵)) → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
22 eluzelz 9471 . . . . . . 7 (𝑧 ∈ (ℤ𝐵) → 𝑧 ∈ ℤ)
2322adantl 275 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ𝐵)) → 𝑧 ∈ ℤ)
2419, 21, 23rspcdva 2834 . . . . 5 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ𝐵)) → DECID 𝑧𝐴)
25 simprl 521 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝑢 ∈ ℤ)
2625peano2zd 9312 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → (𝑢 + 1) ∈ ℤ)
2715zred 9309 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵 ∈ ℝ)
2825zred 9309 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝑢 ∈ ℝ)
2926zred 9309 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → (𝑢 + 1) ∈ ℝ)
30 breq1 3984 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑦𝑢𝐵𝑢))
31 simprr 522 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → ∀𝑦𝐴 𝑦𝑢)
3230, 31, 17rspcdva 2834 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵𝑢)
3328lep1d 8822 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝑢 ≤ (𝑢 + 1))
3427, 28, 29, 32, 33letrd 8018 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵 ≤ (𝑢 + 1))
35 eluz2 9468 . . . . . . 7 ((𝑢 + 1) ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ (𝑢 + 1) ∈ ℤ ∧ 𝐵 ≤ (𝑢 + 1)))
3615, 26, 34, 35syl3anbrc 1171 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → (𝑢 + 1) ∈ (ℤ𝐵))
37 eluzle 9474 . . . . . . . . . 10 (𝑧 ∈ (ℤ‘(𝑢 + 1)) → (𝑢 + 1) ≤ 𝑧)
3837ad2antlr 481 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → (𝑢 + 1) ≤ 𝑧)
3925ad2antrr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑢 ∈ ℤ)
40 eluzelz 9471 . . . . . . . . . . 11 (𝑧 ∈ (ℤ‘(𝑢 + 1)) → 𝑧 ∈ ℤ)
4140ad2antlr 481 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑧 ∈ ℤ)
42 zltp1le 9241 . . . . . . . . . 10 ((𝑢 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑢 < 𝑧 ↔ (𝑢 + 1) ≤ 𝑧))
4339, 41, 42syl2anc 409 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → (𝑢 < 𝑧 ↔ (𝑢 + 1) ≤ 𝑧))
4438, 43mpbird 166 . . . . . . . 8 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑢 < 𝑧)
4541zred 9309 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
4628ad2antrr 480 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑢 ∈ ℝ)
47 breq1 3984 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦𝑢𝑧𝑢))
4831ad2antrr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → ∀𝑦𝐴 𝑦𝑢)
49 simpr 109 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑧𝐴)
5047, 48, 49rspcdva 2834 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑧𝑢)
5145, 46, 50lensymd 8016 . . . . . . . 8 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → ¬ 𝑢 < 𝑧)
5244, 51pm2.65da 651 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) → ¬ 𝑧𝐴)
5352ralrimiva 2538 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → ∀𝑧 ∈ (ℤ‘(𝑢 + 1)) ¬ 𝑧𝐴)
54 fveq2 5485 . . . . . . . 8 (𝑣 = (𝑢 + 1) → (ℤ𝑣) = (ℤ‘(𝑢 + 1)))
5554raleqdv 2666 . . . . . . 7 (𝑣 = (𝑢 + 1) → (∀𝑧 ∈ (ℤ𝑣) ¬ 𝑧𝐴 ↔ ∀𝑧 ∈ (ℤ‘(𝑢 + 1)) ¬ 𝑧𝐴))
5655rspcev 2829 . . . . . 6 (((𝑢 + 1) ∈ (ℤ𝐵) ∧ ∀𝑧 ∈ (ℤ‘(𝑢 + 1)) ¬ 𝑧𝐴) → ∃𝑣 ∈ (ℤ𝐵)∀𝑧 ∈ (ℤ𝑣) ¬ 𝑧𝐴)
5736, 53, 56syl2anc 409 . . . . 5 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → ∃𝑣 ∈ (ℤ𝐵)∀𝑧 ∈ (ℤ𝑣) ¬ 𝑧𝐴)
5815, 16, 17, 24, 57zsupcl 11876 . . . 4 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → sup({𝑧 ∈ ℤ ∣ 𝑧𝐴}, ℝ, < ) ∈ (ℤ𝐵))
5912, 58eqeltrrd 2243 . . 3 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → sup(𝐴, ℝ, < ) ∈ (ℤ𝐵))
60 eluzle 9474 . . 3 (sup(𝐴, ℝ, < ) ∈ (ℤ𝐵) → 𝐵 ≤ sup(𝐴, ℝ, < ))
6159, 60syl 14 . 2 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵 ≤ sup(𝐴, ℝ, < ))
625, 61rexlimddv 2587 1 (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  DECID wdc 824   = wceq 1343  wcel 2136  wral 2443  wrex 2444  {crab 2447  cin 3114  wss 3115   class class class wbr 3981  cfv 5187  (class class class)co 5841  supcsup 6943  cr 7748  1c1 7750   + caddc 7752   < clt 7929  cle 7930  cz 9187  cuz 9462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-addass 7851  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-sup 6945  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-inn 8854  df-n0 9111  df-z 9188  df-uz 9463  df-fz 9941  df-fzo 10074
This theorem is referenced by:  pcprendvds  12218  pcpremul  12221
  Copyright terms: Public domain W3C validator