| Step | Hyp | Ref
| Expression |
| 1 | | suprzubdc.ub |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 2 | | breq2 4038 |
. . . . 5
⊢ (𝑥 = 𝑢 → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ 𝑢)) |
| 3 | 2 | ralbidv 2497 |
. . . 4
⊢ (𝑥 = 𝑢 → (∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) |
| 4 | 3 | cbvrexv 2730 |
. . 3
⊢
(∃𝑥 ∈
ℤ ∀𝑦 ∈
𝐴 𝑦 ≤ 𝑥 ↔ ∃𝑢 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢) |
| 5 | 1, 4 | sylib 122 |
. 2
⊢ (𝜑 → ∃𝑢 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢) |
| 6 | | dfin5 3164 |
. . . . . . 7
⊢ (ℤ
∩ 𝐴) = {𝑧 ∈ ℤ ∣ 𝑧 ∈ 𝐴} |
| 7 | | suprzubdc.ss |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ ℤ) |
| 8 | | sseqin2 3383 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℤ ↔ (ℤ
∩ 𝐴) = 𝐴) |
| 9 | 7, 8 | sylib 122 |
. . . . . . 7
⊢ (𝜑 → (ℤ ∩ 𝐴) = 𝐴) |
| 10 | 6, 9 | eqtr3id 2243 |
. . . . . 6
⊢ (𝜑 → {𝑧 ∈ ℤ ∣ 𝑧 ∈ 𝐴} = 𝐴) |
| 11 | 10 | supeq1d 7062 |
. . . . 5
⊢ (𝜑 → sup({𝑧 ∈ ℤ ∣ 𝑧 ∈ 𝐴}, ℝ, < ) = sup(𝐴, ℝ, < )) |
| 12 | 11 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → sup({𝑧 ∈ ℤ ∣ 𝑧 ∈ 𝐴}, ℝ, < ) = sup(𝐴, ℝ, < )) |
| 13 | | suprzubdc.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| 14 | 7, 13 | sseldd 3185 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 15 | 14 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → 𝐵 ∈ ℤ) |
| 16 | | eleq1 2259 |
. . . . 5
⊢ (𝑧 = 𝐵 → (𝑧 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) |
| 17 | 13 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → 𝐵 ∈ 𝐴) |
| 18 | | eleq1w 2257 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
| 19 | 18 | dcbid 839 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑧 ∈ 𝐴)) |
| 20 | | suprzubdc.dc |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
| 21 | 20 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘𝐵)) → ∀𝑥 ∈ ℤ
DECID 𝑥
∈ 𝐴) |
| 22 | | eluzelz 9627 |
. . . . . . 7
⊢ (𝑧 ∈
(ℤ≥‘𝐵) → 𝑧 ∈ ℤ) |
| 23 | 22 | adantl 277 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘𝐵)) → 𝑧 ∈ ℤ) |
| 24 | 19, 21, 23 | rspcdva 2873 |
. . . . 5
⊢ (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘𝐵)) → DECID
𝑧 ∈ 𝐴) |
| 25 | | simprl 529 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → 𝑢 ∈ ℤ) |
| 26 | 25 | peano2zd 9468 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → (𝑢 + 1) ∈ ℤ) |
| 27 | 15 | zred 9465 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → 𝐵 ∈ ℝ) |
| 28 | 25 | zred 9465 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → 𝑢 ∈ ℝ) |
| 29 | 26 | zred 9465 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → (𝑢 + 1) ∈ ℝ) |
| 30 | | breq1 4037 |
. . . . . . . . 9
⊢ (𝑦 = 𝐵 → (𝑦 ≤ 𝑢 ↔ 𝐵 ≤ 𝑢)) |
| 31 | | simprr 531 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢) |
| 32 | 30, 31, 17 | rspcdva 2873 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → 𝐵 ≤ 𝑢) |
| 33 | 28 | lep1d 8975 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → 𝑢 ≤ (𝑢 + 1)) |
| 34 | 27, 28, 29, 32, 33 | letrd 8167 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → 𝐵 ≤ (𝑢 + 1)) |
| 35 | | eluz2 9624 |
. . . . . . 7
⊢ ((𝑢 + 1) ∈
(ℤ≥‘𝐵) ↔ (𝐵 ∈ ℤ ∧ (𝑢 + 1) ∈ ℤ ∧ 𝐵 ≤ (𝑢 + 1))) |
| 36 | 15, 26, 34, 35 | syl3anbrc 1183 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → (𝑢 + 1) ∈
(ℤ≥‘𝐵)) |
| 37 | | eluzle 9630 |
. . . . . . . . . 10
⊢ (𝑧 ∈
(ℤ≥‘(𝑢 + 1)) → (𝑢 + 1) ≤ 𝑧) |
| 38 | 37 | ad2antlr 489 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → (𝑢 + 1) ≤ 𝑧) |
| 39 | 25 | ad2antrr 488 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → 𝑢 ∈ ℤ) |
| 40 | | eluzelz 9627 |
. . . . . . . . . . 11
⊢ (𝑧 ∈
(ℤ≥‘(𝑢 + 1)) → 𝑧 ∈ ℤ) |
| 41 | 40 | ad2antlr 489 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℤ) |
| 42 | | zltp1le 9397 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑢 < 𝑧 ↔ (𝑢 + 1) ≤ 𝑧)) |
| 43 | 39, 41, 42 | syl2anc 411 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → (𝑢 < 𝑧 ↔ (𝑢 + 1) ≤ 𝑧)) |
| 44 | 38, 43 | mpbird 167 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → 𝑢 < 𝑧) |
| 45 | 41 | zred 9465 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ) |
| 46 | 28 | ad2antrr 488 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → 𝑢 ∈ ℝ) |
| 47 | | breq1 4037 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝑦 ≤ 𝑢 ↔ 𝑧 ≤ 𝑢)) |
| 48 | 31 | ad2antrr 488 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢) |
| 49 | | simpr 110 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) |
| 50 | 47, 48, 49 | rspcdva 2873 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ 𝑢) |
| 51 | 45, 46, 50 | lensymd 8165 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) ∧ 𝑧 ∈ 𝐴) → ¬ 𝑢 < 𝑧) |
| 52 | 44, 51 | pm2.65da 662 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) ∧ 𝑧 ∈ (ℤ≥‘(𝑢 + 1))) → ¬ 𝑧 ∈ 𝐴) |
| 53 | 52 | ralrimiva 2570 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → ∀𝑧 ∈ (ℤ≥‘(𝑢 + 1)) ¬ 𝑧 ∈ 𝐴) |
| 54 | | fveq2 5561 |
. . . . . . . 8
⊢ (𝑣 = (𝑢 + 1) →
(ℤ≥‘𝑣) = (ℤ≥‘(𝑢 + 1))) |
| 55 | 54 | raleqdv 2699 |
. . . . . . 7
⊢ (𝑣 = (𝑢 + 1) → (∀𝑧 ∈ (ℤ≥‘𝑣) ¬ 𝑧 ∈ 𝐴 ↔ ∀𝑧 ∈ (ℤ≥‘(𝑢 + 1)) ¬ 𝑧 ∈ 𝐴)) |
| 56 | 55 | rspcev 2868 |
. . . . . 6
⊢ (((𝑢 + 1) ∈
(ℤ≥‘𝐵) ∧ ∀𝑧 ∈ (ℤ≥‘(𝑢 + 1)) ¬ 𝑧 ∈ 𝐴) → ∃𝑣 ∈ (ℤ≥‘𝐵)∀𝑧 ∈ (ℤ≥‘𝑣) ¬ 𝑧 ∈ 𝐴) |
| 57 | 36, 53, 56 | syl2anc 411 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → ∃𝑣 ∈ (ℤ≥‘𝐵)∀𝑧 ∈ (ℤ≥‘𝑣) ¬ 𝑧 ∈ 𝐴) |
| 58 | 15, 16, 17, 24, 57 | zsupcl 10338 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → sup({𝑧 ∈ ℤ ∣ 𝑧 ∈ 𝐴}, ℝ, < ) ∈
(ℤ≥‘𝐵)) |
| 59 | 12, 58 | eqeltrrd 2274 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → sup(𝐴, ℝ, < ) ∈
(ℤ≥‘𝐵)) |
| 60 | | eluzle 9630 |
. . 3
⊢
(sup(𝐴, ℝ,
< ) ∈ (ℤ≥‘𝐵) → 𝐵 ≤ sup(𝐴, ℝ, < )) |
| 61 | 59, 60 | syl 14 |
. 2
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑢)) → 𝐵 ≤ sup(𝐴, ℝ, < )) |
| 62 | 5, 61 | rexlimddv 2619 |
1
⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) |