ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprzubdc GIF version

Theorem suprzubdc 12092
Description: The supremum of a bounded-above decidable set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.)
Hypotheses
Ref Expression
suprzubdc.ss (𝜑𝐴 ⊆ ℤ)
suprzubdc.dc (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
suprzubdc.ub (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
suprzubdc.b (𝜑𝐵𝐴)
Assertion
Ref Expression
suprzubdc (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
Distinct variable groups:   𝑦,𝐴,𝑥   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem suprzubdc
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suprzubdc.ub . . 3 (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
2 breq2 4034 . . . . 5 (𝑥 = 𝑢 → (𝑦𝑥𝑦𝑢))
32ralbidv 2494 . . . 4 (𝑥 = 𝑢 → (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑦𝐴 𝑦𝑢))
43cbvrexv 2727 . . 3 (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥 ↔ ∃𝑢 ∈ ℤ ∀𝑦𝐴 𝑦𝑢)
51, 4sylib 122 . 2 (𝜑 → ∃𝑢 ∈ ℤ ∀𝑦𝐴 𝑦𝑢)
6 dfin5 3161 . . . . . . 7 (ℤ ∩ 𝐴) = {𝑧 ∈ ℤ ∣ 𝑧𝐴}
7 suprzubdc.ss . . . . . . . 8 (𝜑𝐴 ⊆ ℤ)
8 sseqin2 3379 . . . . . . . 8 (𝐴 ⊆ ℤ ↔ (ℤ ∩ 𝐴) = 𝐴)
97, 8sylib 122 . . . . . . 7 (𝜑 → (ℤ ∩ 𝐴) = 𝐴)
106, 9eqtr3id 2240 . . . . . 6 (𝜑 → {𝑧 ∈ ℤ ∣ 𝑧𝐴} = 𝐴)
1110supeq1d 7048 . . . . 5 (𝜑 → sup({𝑧 ∈ ℤ ∣ 𝑧𝐴}, ℝ, < ) = sup(𝐴, ℝ, < ))
1211adantr 276 . . . 4 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → sup({𝑧 ∈ ℤ ∣ 𝑧𝐴}, ℝ, < ) = sup(𝐴, ℝ, < ))
13 suprzubdc.b . . . . . . 7 (𝜑𝐵𝐴)
147, 13sseldd 3181 . . . . . 6 (𝜑𝐵 ∈ ℤ)
1514adantr 276 . . . . 5 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵 ∈ ℤ)
16 eleq1 2256 . . . . 5 (𝑧 = 𝐵 → (𝑧𝐴𝐵𝐴))
1713adantr 276 . . . . 5 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵𝐴)
18 eleq1w 2254 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1918dcbid 839 . . . . . 6 (𝑥 = 𝑧 → (DECID 𝑥𝐴DECID 𝑧𝐴))
20 suprzubdc.dc . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
2120ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ𝐵)) → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)
22 eluzelz 9604 . . . . . . 7 (𝑧 ∈ (ℤ𝐵) → 𝑧 ∈ ℤ)
2322adantl 277 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ𝐵)) → 𝑧 ∈ ℤ)
2419, 21, 23rspcdva 2870 . . . . 5 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ𝐵)) → DECID 𝑧𝐴)
25 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝑢 ∈ ℤ)
2625peano2zd 9445 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → (𝑢 + 1) ∈ ℤ)
2715zred 9442 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵 ∈ ℝ)
2825zred 9442 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝑢 ∈ ℝ)
2926zred 9442 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → (𝑢 + 1) ∈ ℝ)
30 breq1 4033 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑦𝑢𝐵𝑢))
31 simprr 531 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → ∀𝑦𝐴 𝑦𝑢)
3230, 31, 17rspcdva 2870 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵𝑢)
3328lep1d 8952 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝑢 ≤ (𝑢 + 1))
3427, 28, 29, 32, 33letrd 8145 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵 ≤ (𝑢 + 1))
35 eluz2 9601 . . . . . . 7 ((𝑢 + 1) ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ (𝑢 + 1) ∈ ℤ ∧ 𝐵 ≤ (𝑢 + 1)))
3615, 26, 34, 35syl3anbrc 1183 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → (𝑢 + 1) ∈ (ℤ𝐵))
37 eluzle 9607 . . . . . . . . . 10 (𝑧 ∈ (ℤ‘(𝑢 + 1)) → (𝑢 + 1) ≤ 𝑧)
3837ad2antlr 489 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → (𝑢 + 1) ≤ 𝑧)
3925ad2antrr 488 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑢 ∈ ℤ)
40 eluzelz 9604 . . . . . . . . . . 11 (𝑧 ∈ (ℤ‘(𝑢 + 1)) → 𝑧 ∈ ℤ)
4140ad2antlr 489 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑧 ∈ ℤ)
42 zltp1le 9374 . . . . . . . . . 10 ((𝑢 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑢 < 𝑧 ↔ (𝑢 + 1) ≤ 𝑧))
4339, 41, 42syl2anc 411 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → (𝑢 < 𝑧 ↔ (𝑢 + 1) ≤ 𝑧))
4438, 43mpbird 167 . . . . . . . 8 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑢 < 𝑧)
4541zred 9442 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
4628ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑢 ∈ ℝ)
47 breq1 4033 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦𝑢𝑧𝑢))
4831ad2antrr 488 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → ∀𝑦𝐴 𝑦𝑢)
49 simpr 110 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑧𝐴)
5047, 48, 49rspcdva 2870 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → 𝑧𝑢)
5145, 46, 50lensymd 8143 . . . . . . . 8 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) ∧ 𝑧𝐴) → ¬ 𝑢 < 𝑧)
5244, 51pm2.65da 662 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) ∧ 𝑧 ∈ (ℤ‘(𝑢 + 1))) → ¬ 𝑧𝐴)
5352ralrimiva 2567 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → ∀𝑧 ∈ (ℤ‘(𝑢 + 1)) ¬ 𝑧𝐴)
54 fveq2 5555 . . . . . . . 8 (𝑣 = (𝑢 + 1) → (ℤ𝑣) = (ℤ‘(𝑢 + 1)))
5554raleqdv 2696 . . . . . . 7 (𝑣 = (𝑢 + 1) → (∀𝑧 ∈ (ℤ𝑣) ¬ 𝑧𝐴 ↔ ∀𝑧 ∈ (ℤ‘(𝑢 + 1)) ¬ 𝑧𝐴))
5655rspcev 2865 . . . . . 6 (((𝑢 + 1) ∈ (ℤ𝐵) ∧ ∀𝑧 ∈ (ℤ‘(𝑢 + 1)) ¬ 𝑧𝐴) → ∃𝑣 ∈ (ℤ𝐵)∀𝑧 ∈ (ℤ𝑣) ¬ 𝑧𝐴)
5736, 53, 56syl2anc 411 . . . . 5 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → ∃𝑣 ∈ (ℤ𝐵)∀𝑧 ∈ (ℤ𝑣) ¬ 𝑧𝐴)
5815, 16, 17, 24, 57zsupcl 12087 . . . 4 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → sup({𝑧 ∈ ℤ ∣ 𝑧𝐴}, ℝ, < ) ∈ (ℤ𝐵))
5912, 58eqeltrrd 2271 . . 3 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → sup(𝐴, ℝ, < ) ∈ (ℤ𝐵))
60 eluzle 9607 . . 3 (sup(𝐴, ℝ, < ) ∈ (ℤ𝐵) → 𝐵 ≤ sup(𝐴, ℝ, < ))
6159, 60syl 14 . 2 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ ∀𝑦𝐴 𝑦𝑢)) → 𝐵 ≤ sup(𝐴, ℝ, < ))
625, 61rexlimddv 2616 1 (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2164  wral 2472  wrex 2473  {crab 2476  cin 3153  wss 3154   class class class wbr 4030  cfv 5255  (class class class)co 5919  supcsup 7043  cr 7873  1c1 7875   + caddc 7877   < clt 8056  cle 8057  cz 9320  cuz 9595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-sup 7045  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-fzo 10212
This theorem is referenced by:  pcprendvds  12431  pcpremul  12434
  Copyright terms: Public domain W3C validator