ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmindc GIF version

Theorem nnmindc 12399
Description: An inhabited decidable subset of the natural numbers has a minimum. (Contributed by Jim Kingdon, 23-Sep-2024.)
Assertion
Ref Expression
nnmindc ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∃𝑦 𝑦𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem nnmindc
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 1zzd 9406 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) → 1 ∈ ℤ)
2 eqid 2206 . . . . . 6 {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴} = {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴}
3 simpr 110 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦𝐴)
4 dfss5 3379 . . . . . . . . . 10 (𝐴 ⊆ ℕ ↔ 𝐴 = (ℕ ∩ 𝐴))
54biimpi 120 . . . . . . . . 9 (𝐴 ⊆ ℕ → 𝐴 = (ℕ ∩ 𝐴))
6 nnuz 9691 . . . . . . . . . . 11 ℕ = (ℤ‘1)
76ineq1i 3371 . . . . . . . . . 10 (ℕ ∩ 𝐴) = ((ℤ‘1) ∩ 𝐴)
8 dfin5 3174 . . . . . . . . . 10 ((ℤ‘1) ∩ 𝐴) = {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴}
97, 8eqtri 2227 . . . . . . . . 9 (ℕ ∩ 𝐴) = {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴}
105, 9eqtrdi 2255 . . . . . . . 8 (𝐴 ⊆ ℕ → 𝐴 = {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴})
1110ad2antrr 488 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) → 𝐴 = {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴})
123, 11eleqtrd 2285 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 ∈ {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴})
13 eleq1w 2267 . . . . . . . 8 (𝑥 = 𝑛 → (𝑥𝐴𝑛𝐴))
1413dcbid 840 . . . . . . 7 (𝑥 = 𝑛 → (DECID 𝑥𝐴DECID 𝑛𝐴))
15 simpllr 534 . . . . . . 7 ((((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑛 ∈ (1...𝑦)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
16 elfznn 10183 . . . . . . . 8 (𝑛 ∈ (1...𝑦) → 𝑛 ∈ ℕ)
1716adantl 277 . . . . . . 7 ((((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑛 ∈ (1...𝑦)) → 𝑛 ∈ ℕ)
1814, 15, 17rspcdva 2883 . . . . . 6 ((((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑛 ∈ (1...𝑦)) → DECID 𝑛𝐴)
191, 2, 12, 18infssuzcldc 10385 . . . . 5 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) → inf({𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴}, ℝ, < ) ∈ {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴})
2011infeq1d 7121 . . . . 5 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) → inf(𝐴, ℝ, < ) = inf({𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴}, ℝ, < ))
2119, 20, 113eltr4d 2290 . . . 4 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴)
2221ex 115 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → (𝑦𝐴 → inf(𝐴, ℝ, < ) ∈ 𝐴))
2322exlimdv 1843 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → (∃𝑦 𝑦𝐴 → inf(𝐴, ℝ, < ) ∈ 𝐴))
24233impia 1203 1 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∃𝑦 𝑦𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836  w3a 981   = wceq 1373  wex 1516  wcel 2177  wral 2485  {crab 2489  cin 3166  wss 3167  cfv 5276  (class class class)co 5951  infcinf 7092  cr 7931  1c1 7933   < clt 8114  cn 9043  cuz 9655  ...cfz 10137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-po 4347  df-iso 4348  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-n0 9303  df-z 9380  df-uz 9656  df-fz 10138  df-fzo 10272
This theorem is referenced by:  nnwodc  12401  nninfdclemcl  12863  nninfdclemp1  12865
  Copyright terms: Public domain W3C validator