| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmindc | GIF version | ||
| Description: An inhabited decidable subset of the natural numbers has a minimum. (Contributed by Jim Kingdon, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| nnmindc | ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1zzd 9441 | . . . . . 6 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 1 ∈ ℤ) | |
| 2 | eqid 2209 | . . . . . 6 ⊢ {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} | |
| 3 | simpr 110 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
| 4 | dfss5 3389 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ ℕ ↔ 𝐴 = (ℕ ∩ 𝐴)) | |
| 5 | 4 | biimpi 120 | . . . . . . . . 9 ⊢ (𝐴 ⊆ ℕ → 𝐴 = (ℕ ∩ 𝐴)) |
| 6 | nnuz 9726 | . . . . . . . . . . 11 ⊢ ℕ = (ℤ≥‘1) | |
| 7 | 6 | ineq1i 3381 | . . . . . . . . . 10 ⊢ (ℕ ∩ 𝐴) = ((ℤ≥‘1) ∩ 𝐴) |
| 8 | dfin5 3184 | . . . . . . . . . 10 ⊢ ((ℤ≥‘1) ∩ 𝐴) = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} | |
| 9 | 7, 8 | eqtri 2230 | . . . . . . . . 9 ⊢ (ℕ ∩ 𝐴) = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} |
| 10 | 5, 9 | eqtrdi 2258 | . . . . . . . 8 ⊢ (𝐴 ⊆ ℕ → 𝐴 = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}) |
| 11 | 10 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝐴 = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}) |
| 12 | 3, 11 | eleqtrd 2288 | . . . . . 6 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}) |
| 13 | eleq1w 2270 | . . . . . . . 8 ⊢ (𝑥 = 𝑛 → (𝑥 ∈ 𝐴 ↔ 𝑛 ∈ 𝐴)) | |
| 14 | 13 | dcbid 842 | . . . . . . 7 ⊢ (𝑥 = 𝑛 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑛 ∈ 𝐴)) |
| 15 | simpllr 534 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑛 ∈ (1...𝑦)) → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) | |
| 16 | elfznn 10218 | . . . . . . . 8 ⊢ (𝑛 ∈ (1...𝑦) → 𝑛 ∈ ℕ) | |
| 17 | 16 | adantl 277 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑛 ∈ (1...𝑦)) → 𝑛 ∈ ℕ) |
| 18 | 14, 15, 17 | rspcdva 2892 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑛 ∈ (1...𝑦)) → DECID 𝑛 ∈ 𝐴) |
| 19 | 1, 2, 12, 18 | infssuzcldc 10422 | . . . . 5 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → inf({𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}, ℝ, < ) ∈ {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}) |
| 20 | 11 | infeq1d 7147 | . . . . 5 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → inf(𝐴, ℝ, < ) = inf({𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}, ℝ, < )) |
| 21 | 19, 20, 11 | 3eltr4d 2293 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴) |
| 22 | 21 | ex 115 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐴 → inf(𝐴, ℝ, < ) ∈ 𝐴)) |
| 23 | 22 | exlimdv 1845 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) → (∃𝑦 𝑦 ∈ 𝐴 → inf(𝐴, ℝ, < ) ∈ 𝐴)) |
| 24 | 23 | 3impia 1205 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 838 ∧ w3a 983 = wceq 1375 ∃wex 1518 ∈ wcel 2180 ∀wral 2488 {crab 2492 ∩ cin 3176 ⊆ wss 3177 ‘cfv 5294 (class class class)co 5974 infcinf 7118 ℝcr 7966 1c1 7968 < clt 8149 ℕcn 9078 ℤ≥cuz 9690 ...cfz 10172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-sup 7119 df-inf 7120 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-n0 9338 df-z 9415 df-uz 9691 df-fz 10173 df-fzo 10307 |
| This theorem is referenced by: nnwodc 12523 nninfdclemcl 12985 nninfdclemp1 12987 |
| Copyright terms: Public domain | W3C validator |