![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnmindc | GIF version |
Description: An inhabited decidable subset of the natural numbers has a minimum. (Contributed by Jim Kingdon, 23-Sep-2024.) |
Ref | Expression |
---|---|
nnmindc | ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1zzd 9278 | . . . . . 6 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 1 ∈ ℤ) | |
2 | eqid 2177 | . . . . . 6 ⊢ {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} | |
3 | simpr 110 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
4 | dfss5 3340 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ ℕ ↔ 𝐴 = (ℕ ∩ 𝐴)) | |
5 | 4 | biimpi 120 | . . . . . . . . 9 ⊢ (𝐴 ⊆ ℕ → 𝐴 = (ℕ ∩ 𝐴)) |
6 | nnuz 9561 | . . . . . . . . . . 11 ⊢ ℕ = (ℤ≥‘1) | |
7 | 6 | ineq1i 3332 | . . . . . . . . . 10 ⊢ (ℕ ∩ 𝐴) = ((ℤ≥‘1) ∩ 𝐴) |
8 | dfin5 3136 | . . . . . . . . . 10 ⊢ ((ℤ≥‘1) ∩ 𝐴) = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} | |
9 | 7, 8 | eqtri 2198 | . . . . . . . . 9 ⊢ (ℕ ∩ 𝐴) = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} |
10 | 5, 9 | eqtrdi 2226 | . . . . . . . 8 ⊢ (𝐴 ⊆ ℕ → 𝐴 = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}) |
11 | 10 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝐴 = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}) |
12 | 3, 11 | eleqtrd 2256 | . . . . . 6 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}) |
13 | eleq1w 2238 | . . . . . . . 8 ⊢ (𝑥 = 𝑛 → (𝑥 ∈ 𝐴 ↔ 𝑛 ∈ 𝐴)) | |
14 | 13 | dcbid 838 | . . . . . . 7 ⊢ (𝑥 = 𝑛 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑛 ∈ 𝐴)) |
15 | simpllr 534 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑛 ∈ (1...𝑦)) → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) | |
16 | elfznn 10051 | . . . . . . . 8 ⊢ (𝑛 ∈ (1...𝑦) → 𝑛 ∈ ℕ) | |
17 | 16 | adantl 277 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑛 ∈ (1...𝑦)) → 𝑛 ∈ ℕ) |
18 | 14, 15, 17 | rspcdva 2846 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑛 ∈ (1...𝑦)) → DECID 𝑛 ∈ 𝐴) |
19 | 1, 2, 12, 18 | infssuzcldc 11946 | . . . . 5 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → inf({𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}, ℝ, < ) ∈ {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}) |
20 | 11 | infeq1d 7010 | . . . . 5 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → inf(𝐴, ℝ, < ) = inf({𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}, ℝ, < )) |
21 | 19, 20, 11 | 3eltr4d 2261 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴) |
22 | 21 | ex 115 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐴 → inf(𝐴, ℝ, < ) ∈ 𝐴)) |
23 | 22 | exlimdv 1819 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) → (∃𝑦 𝑦 ∈ 𝐴 → inf(𝐴, ℝ, < ) ∈ 𝐴)) |
24 | 23 | 3impia 1200 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 834 ∧ w3a 978 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ∀wral 2455 {crab 2459 ∩ cin 3128 ⊆ wss 3129 ‘cfv 5216 (class class class)co 5874 infcinf 6981 ℝcr 7809 1c1 7811 < clt 7990 ℕcn 8917 ℤ≥cuz 9526 ...cfz 10006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-addcom 7910 ax-addass 7912 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-0id 7918 ax-rnegex 7919 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-apti 7925 ax-pre-ltadd 7926 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-po 4296 df-iso 4297 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-isom 5225 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-1st 6140 df-2nd 6141 df-sup 6982 df-inf 6983 df-pnf 7992 df-mnf 7993 df-xr 7994 df-ltxr 7995 df-le 7996 df-sub 8128 df-neg 8129 df-inn 8918 df-n0 9175 df-z 9252 df-uz 9527 df-fz 10007 df-fzo 10140 |
This theorem is referenced by: nnwodc 12031 nninfdclemcl 12443 nninfdclemp1 12445 |
Copyright terms: Public domain | W3C validator |