ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmindc GIF version

Theorem nnmindc 12201
Description: An inhabited decidable subset of the natural numbers has a minimum. (Contributed by Jim Kingdon, 23-Sep-2024.)
Assertion
Ref Expression
nnmindc ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∃𝑦 𝑦𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem nnmindc
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 1zzd 9353 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) → 1 ∈ ℤ)
2 eqid 2196 . . . . . 6 {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴} = {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴}
3 simpr 110 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦𝐴)
4 dfss5 3368 . . . . . . . . . 10 (𝐴 ⊆ ℕ ↔ 𝐴 = (ℕ ∩ 𝐴))
54biimpi 120 . . . . . . . . 9 (𝐴 ⊆ ℕ → 𝐴 = (ℕ ∩ 𝐴))
6 nnuz 9637 . . . . . . . . . . 11 ℕ = (ℤ‘1)
76ineq1i 3360 . . . . . . . . . 10 (ℕ ∩ 𝐴) = ((ℤ‘1) ∩ 𝐴)
8 dfin5 3164 . . . . . . . . . 10 ((ℤ‘1) ∩ 𝐴) = {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴}
97, 8eqtri 2217 . . . . . . . . 9 (ℕ ∩ 𝐴) = {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴}
105, 9eqtrdi 2245 . . . . . . . 8 (𝐴 ⊆ ℕ → 𝐴 = {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴})
1110ad2antrr 488 . . . . . . 7 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) → 𝐴 = {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴})
123, 11eleqtrd 2275 . . . . . 6 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 ∈ {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴})
13 eleq1w 2257 . . . . . . . 8 (𝑥 = 𝑛 → (𝑥𝐴𝑛𝐴))
1413dcbid 839 . . . . . . 7 (𝑥 = 𝑛 → (DECID 𝑥𝐴DECID 𝑛𝐴))
15 simpllr 534 . . . . . . 7 ((((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑛 ∈ (1...𝑦)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
16 elfznn 10129 . . . . . . . 8 (𝑛 ∈ (1...𝑦) → 𝑛 ∈ ℕ)
1716adantl 277 . . . . . . 7 ((((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑛 ∈ (1...𝑦)) → 𝑛 ∈ ℕ)
1814, 15, 17rspcdva 2873 . . . . . 6 ((((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑛 ∈ (1...𝑦)) → DECID 𝑛𝐴)
191, 2, 12, 18infssuzcldc 10325 . . . . 5 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) → inf({𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴}, ℝ, < ) ∈ {𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴})
2011infeq1d 7078 . . . . 5 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) → inf(𝐴, ℝ, < ) = inf({𝑛 ∈ (ℤ‘1) ∣ 𝑛𝐴}, ℝ, < ))
2119, 20, 113eltr4d 2280 . . . 4 (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) ∧ 𝑦𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴)
2221ex 115 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → (𝑦𝐴 → inf(𝐴, ℝ, < ) ∈ 𝐴))
2322exlimdv 1833 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → (∃𝑦 𝑦𝐴 → inf(𝐴, ℝ, < ) ∈ 𝐴))
24233impia 1202 1 ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∃𝑦 𝑦𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835  w3a 980   = wceq 1364  wex 1506  wcel 2167  wral 2475  {crab 2479  cin 3156  wss 3157  cfv 5258  (class class class)co 5922  infcinf 7049  cr 7878  1c1 7880   < clt 8061  cn 8990  cuz 9601  ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218
This theorem is referenced by:  nnwodc  12203  nninfdclemcl  12665  nninfdclemp1  12667
  Copyright terms: Public domain W3C validator