| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmindc | GIF version | ||
| Description: An inhabited decidable subset of the natural numbers has a minimum. (Contributed by Jim Kingdon, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| nnmindc | ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1zzd 9406 | . . . . . 6 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 1 ∈ ℤ) | |
| 2 | eqid 2206 | . . . . . 6 ⊢ {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} | |
| 3 | simpr 110 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
| 4 | dfss5 3379 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ ℕ ↔ 𝐴 = (ℕ ∩ 𝐴)) | |
| 5 | 4 | biimpi 120 | . . . . . . . . 9 ⊢ (𝐴 ⊆ ℕ → 𝐴 = (ℕ ∩ 𝐴)) |
| 6 | nnuz 9691 | . . . . . . . . . . 11 ⊢ ℕ = (ℤ≥‘1) | |
| 7 | 6 | ineq1i 3371 | . . . . . . . . . 10 ⊢ (ℕ ∩ 𝐴) = ((ℤ≥‘1) ∩ 𝐴) |
| 8 | dfin5 3174 | . . . . . . . . . 10 ⊢ ((ℤ≥‘1) ∩ 𝐴) = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} | |
| 9 | 7, 8 | eqtri 2227 | . . . . . . . . 9 ⊢ (ℕ ∩ 𝐴) = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴} |
| 10 | 5, 9 | eqtrdi 2255 | . . . . . . . 8 ⊢ (𝐴 ⊆ ℕ → 𝐴 = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}) |
| 11 | 10 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝐴 = {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}) |
| 12 | 3, 11 | eleqtrd 2285 | . . . . . 6 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}) |
| 13 | eleq1w 2267 | . . . . . . . 8 ⊢ (𝑥 = 𝑛 → (𝑥 ∈ 𝐴 ↔ 𝑛 ∈ 𝐴)) | |
| 14 | 13 | dcbid 840 | . . . . . . 7 ⊢ (𝑥 = 𝑛 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑛 ∈ 𝐴)) |
| 15 | simpllr 534 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑛 ∈ (1...𝑦)) → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) | |
| 16 | elfznn 10183 | . . . . . . . 8 ⊢ (𝑛 ∈ (1...𝑦) → 𝑛 ∈ ℕ) | |
| 17 | 16 | adantl 277 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑛 ∈ (1...𝑦)) → 𝑛 ∈ ℕ) |
| 18 | 14, 15, 17 | rspcdva 2883 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑛 ∈ (1...𝑦)) → DECID 𝑛 ∈ 𝐴) |
| 19 | 1, 2, 12, 18 | infssuzcldc 10385 | . . . . 5 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → inf({𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}, ℝ, < ) ∈ {𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}) |
| 20 | 11 | infeq1d 7121 | . . . . 5 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → inf(𝐴, ℝ, < ) = inf({𝑛 ∈ (ℤ≥‘1) ∣ 𝑛 ∈ 𝐴}, ℝ, < )) |
| 21 | 19, 20, 11 | 3eltr4d 2290 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴) |
| 22 | 21 | ex 115 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐴 → inf(𝐴, ℝ, < ) ∈ 𝐴)) |
| 23 | 22 | exlimdv 1843 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) → (∃𝑦 𝑦 ∈ 𝐴 → inf(𝐴, ℝ, < ) ∈ 𝐴)) |
| 24 | 23 | 3impia 1203 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 ∈ 𝐴) → inf(𝐴, ℝ, < ) ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 836 ∧ w3a 981 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ∀wral 2485 {crab 2489 ∩ cin 3166 ⊆ wss 3167 ‘cfv 5276 (class class class)co 5951 infcinf 7092 ℝcr 7931 1c1 7933 < clt 8114 ℕcn 9043 ℤ≥cuz 9655 ...cfz 10137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-po 4347 df-iso 4348 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-sup 7093 df-inf 7094 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-n0 9303 df-z 9380 df-uz 9656 df-fz 10138 df-fzo 10272 |
| This theorem is referenced by: nnwodc 12401 nninfdclemcl 12863 nninfdclemp1 12865 |
| Copyright terms: Public domain | W3C validator |