| Step | Hyp | Ref
| Expression |
| 1 | | nninfdcex.m |
. . 3
⊢ (𝜑 → ∃𝑦 𝑦 ∈ 𝐴) |
| 2 | | eleq1w 2257 |
. . . 4
⊢ (𝑦 = 𝑎 → (𝑦 ∈ 𝐴 ↔ 𝑎 ∈ 𝐴)) |
| 3 | 2 | cbvexv 1933 |
. . 3
⊢
(∃𝑦 𝑦 ∈ 𝐴 ↔ ∃𝑎 𝑎 ∈ 𝐴) |
| 4 | 1, 3 | sylib 122 |
. 2
⊢ (𝜑 → ∃𝑎 𝑎 ∈ 𝐴) |
| 5 | | 1zzd 9353 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 1 ∈ ℤ) |
| 6 | | eqid 2196 |
. . . 4
⊢ {𝑝 ∈
(ℤ≥‘1) ∣ 𝑝 ∈ 𝐴} = {𝑝 ∈ (ℤ≥‘1)
∣ 𝑝 ∈ 𝐴} |
| 7 | | nninfdcex.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| 8 | | nnuz 9637 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
| 9 | 7, 8 | sseqtrdi 3231 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘1)) |
| 10 | | dfss5 3368 |
. . . . . . . 8
⊢ (𝐴 ⊆
(ℤ≥‘1) ↔ 𝐴 = ((ℤ≥‘1) ∩
𝐴)) |
| 11 | 9, 10 | sylib 122 |
. . . . . . 7
⊢ (𝜑 → 𝐴 = ((ℤ≥‘1) ∩
𝐴)) |
| 12 | | dfin5 3164 |
. . . . . . 7
⊢
((ℤ≥‘1) ∩ 𝐴) = {𝑝 ∈ (ℤ≥‘1)
∣ 𝑝 ∈ 𝐴} |
| 13 | 11, 12 | eqtrdi 2245 |
. . . . . 6
⊢ (𝜑 → 𝐴 = {𝑝 ∈ (ℤ≥‘1)
∣ 𝑝 ∈ 𝐴}) |
| 14 | 13 | eleq2d 2266 |
. . . . 5
⊢ (𝜑 → (𝑎 ∈ 𝐴 ↔ 𝑎 ∈ {𝑝 ∈ (ℤ≥‘1)
∣ 𝑝 ∈ 𝐴})) |
| 15 | 14 | biimpa 296 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ {𝑝 ∈ (ℤ≥‘1)
∣ 𝑝 ∈ 𝐴}) |
| 16 | | eleq1w 2257 |
. . . . . 6
⊢ (𝑥 = 𝑝 → (𝑥 ∈ 𝐴 ↔ 𝑝 ∈ 𝐴)) |
| 17 | 16 | dcbid 839 |
. . . . 5
⊢ (𝑥 = 𝑝 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑝 ∈ 𝐴)) |
| 18 | | nninfdcex.dc |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
| 19 | 18 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (1...𝑎)) → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
| 20 | | elfznn 10129 |
. . . . . 6
⊢ (𝑝 ∈ (1...𝑎) → 𝑝 ∈ ℕ) |
| 21 | 20 | adantl 277 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (1...𝑎)) → 𝑝 ∈ ℕ) |
| 22 | 17, 19, 21 | rspcdva 2873 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑝 ∈ (1...𝑎)) → DECID 𝑝 ∈ 𝐴) |
| 23 | 5, 6, 15, 22 | infssuzex 10323 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑝 ∈ (ℤ≥‘1)
∣ 𝑝 ∈ 𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ≥‘1)
∣ 𝑝 ∈ 𝐴}𝑧 < 𝑦))) |
| 24 | 13 | raleqdv 2699 |
. . . . . 6
⊢ (𝜑 → (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ {𝑝 ∈ (ℤ≥‘1)
∣ 𝑝 ∈ 𝐴} ¬ 𝑦 < 𝑥)) |
| 25 | 13 | rexeqdv 2700 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑧 ∈ 𝐴 𝑧 < 𝑦 ↔ ∃𝑧 ∈ {𝑝 ∈ (ℤ≥‘1)
∣ 𝑝 ∈ 𝐴}𝑧 < 𝑦)) |
| 26 | 25 | imbi2d 230 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ≥‘1)
∣ 𝑝 ∈ 𝐴}𝑧 < 𝑦))) |
| 27 | 26 | ralbidv 2497 |
. . . . . 6
⊢ (𝜑 → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ≥‘1)
∣ 𝑝 ∈ 𝐴}𝑧 < 𝑦))) |
| 28 | 24, 27 | anbi12d 473 |
. . . . 5
⊢ (𝜑 → ((∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) ↔ (∀𝑦 ∈ {𝑝 ∈ (ℤ≥‘1)
∣ 𝑝 ∈ 𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ≥‘1)
∣ 𝑝 ∈ 𝐴}𝑧 < 𝑦)))) |
| 29 | 28 | rexbidv 2498 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑝 ∈ (ℤ≥‘1)
∣ 𝑝 ∈ 𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ≥‘1)
∣ 𝑝 ∈ 𝐴}𝑧 < 𝑦)))) |
| 30 | 29 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑝 ∈ (ℤ≥‘1)
∣ 𝑝 ∈ 𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ≥‘1)
∣ 𝑝 ∈ 𝐴}𝑧 < 𝑦)))) |
| 31 | 23, 30 | mpbird 167 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 32 | 4, 31 | exlimddv 1913 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |