ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdcex GIF version

Theorem nninfdcex 11853
Description: A decidable set of natural numbers has an infimum. (Contributed by Jim Kingdon, 28-Sep-2024.)
Hypotheses
Ref Expression
nninfdcex.a (𝜑𝐴 ⊆ ℕ)
nninfdcex.dc (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
nninfdcex.m (𝜑 → ∃𝑦 𝑦𝐴)
Assertion
Ref Expression
nninfdcex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥,𝑦
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem nninfdcex
Dummy variables 𝑎 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdcex.m . . 3 (𝜑 → ∃𝑦 𝑦𝐴)
2 eleq1w 2218 . . . 4 (𝑦 = 𝑎 → (𝑦𝐴𝑎𝐴))
32cbvexv 1898 . . 3 (∃𝑦 𝑦𝐴 ↔ ∃𝑎 𝑎𝐴)
41, 3sylib 121 . 2 (𝜑 → ∃𝑎 𝑎𝐴)
5 1zzd 9200 . . . 4 ((𝜑𝑎𝐴) → 1 ∈ ℤ)
6 eqid 2157 . . . 4 {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴} = {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}
7 nninfdcex.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℕ)
8 nnuz 9480 . . . . . . . . 9 ℕ = (ℤ‘1)
97, 8sseqtrdi 3176 . . . . . . . 8 (𝜑𝐴 ⊆ (ℤ‘1))
10 dfss5 3313 . . . . . . . 8 (𝐴 ⊆ (ℤ‘1) ↔ 𝐴 = ((ℤ‘1) ∩ 𝐴))
119, 10sylib 121 . . . . . . 7 (𝜑𝐴 = ((ℤ‘1) ∩ 𝐴))
12 dfin5 3109 . . . . . . 7 ((ℤ‘1) ∩ 𝐴) = {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}
1311, 12eqtrdi 2206 . . . . . 6 (𝜑𝐴 = {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴})
1413eleq2d 2227 . . . . 5 (𝜑 → (𝑎𝐴𝑎 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}))
1514biimpa 294 . . . 4 ((𝜑𝑎𝐴) → 𝑎 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴})
16 eleq1w 2218 . . . . . 6 (𝑥 = 𝑝 → (𝑥𝐴𝑝𝐴))
1716dcbid 824 . . . . 5 (𝑥 = 𝑝 → (DECID 𝑥𝐴DECID 𝑝𝐴))
18 nninfdcex.dc . . . . . 6 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
1918ad2antrr 480 . . . . 5 (((𝜑𝑎𝐴) ∧ 𝑝 ∈ (1...𝑎)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
20 elfznn 9963 . . . . . 6 (𝑝 ∈ (1...𝑎) → 𝑝 ∈ ℕ)
2120adantl 275 . . . . 5 (((𝜑𝑎𝐴) ∧ 𝑝 ∈ (1...𝑎)) → 𝑝 ∈ ℕ)
2217, 19, 21rspcdva 2821 . . . 4 (((𝜑𝑎𝐴) ∧ 𝑝 ∈ (1...𝑎)) → DECID 𝑝𝐴)
235, 6, 15, 22infssuzex 11849 . . 3 ((𝜑𝑎𝐴) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦)))
2413raleqdv 2658 . . . . . 6 (𝜑 → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴} ¬ 𝑦 < 𝑥))
2513rexeqdv 2659 . . . . . . . 8 (𝜑 → (∃𝑧𝐴 𝑧 < 𝑦 ↔ ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦))
2625imbi2d 229 . . . . . . 7 (𝜑 → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦)))
2726ralbidv 2457 . . . . . 6 (𝜑 → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦)))
2824, 27anbi12d 465 . . . . 5 (𝜑 → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦))))
2928rexbidv 2458 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦))))
3029adantr 274 . . 3 ((𝜑𝑎𝐴) → (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦))))
3123, 30mpbird 166 . 2 ((𝜑𝑎𝐴) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
324, 31exlimddv 1878 1 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  DECID wdc 820   = wceq 1335  wex 1472  wcel 2128  wral 2435  wrex 2436  {crab 2439  cin 3101  wss 3102   class class class wbr 3967  cfv 5173  (class class class)co 5827  cr 7734  1c1 7736   < clt 7915  cn 8839  cuz 9445  ...cfz 9919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4085  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-addcom 7835  ax-addass 7837  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-0id 7843  ax-rnegex 7844  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-id 4256  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-fv 5181  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-inn 8840  df-n0 9097  df-z 9174  df-uz 9446  df-fz 9920  df-fzo 10052
This theorem is referenced by:  nninfdclemp1  12277
  Copyright terms: Public domain W3C validator