ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdcex GIF version

Theorem nninfdcex 11937
Description: A decidable set of natural numbers has an infimum. (Contributed by Jim Kingdon, 28-Sep-2024.)
Hypotheses
Ref Expression
nninfdcex.a (𝜑𝐴 ⊆ ℕ)
nninfdcex.dc (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
nninfdcex.m (𝜑 → ∃𝑦 𝑦𝐴)
Assertion
Ref Expression
nninfdcex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥,𝑦
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem nninfdcex
Dummy variables 𝑎 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdcex.m . . 3 (𝜑 → ∃𝑦 𝑦𝐴)
2 eleq1w 2238 . . . 4 (𝑦 = 𝑎 → (𝑦𝐴𝑎𝐴))
32cbvexv 1918 . . 3 (∃𝑦 𝑦𝐴 ↔ ∃𝑎 𝑎𝐴)
41, 3sylib 122 . 2 (𝜑 → ∃𝑎 𝑎𝐴)
5 1zzd 9269 . . . 4 ((𝜑𝑎𝐴) → 1 ∈ ℤ)
6 eqid 2177 . . . 4 {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴} = {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}
7 nninfdcex.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℕ)
8 nnuz 9552 . . . . . . . . 9 ℕ = (ℤ‘1)
97, 8sseqtrdi 3203 . . . . . . . 8 (𝜑𝐴 ⊆ (ℤ‘1))
10 dfss5 3340 . . . . . . . 8 (𝐴 ⊆ (ℤ‘1) ↔ 𝐴 = ((ℤ‘1) ∩ 𝐴))
119, 10sylib 122 . . . . . . 7 (𝜑𝐴 = ((ℤ‘1) ∩ 𝐴))
12 dfin5 3136 . . . . . . 7 ((ℤ‘1) ∩ 𝐴) = {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}
1311, 12eqtrdi 2226 . . . . . 6 (𝜑𝐴 = {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴})
1413eleq2d 2247 . . . . 5 (𝜑 → (𝑎𝐴𝑎 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}))
1514biimpa 296 . . . 4 ((𝜑𝑎𝐴) → 𝑎 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴})
16 eleq1w 2238 . . . . . 6 (𝑥 = 𝑝 → (𝑥𝐴𝑝𝐴))
1716dcbid 838 . . . . 5 (𝑥 = 𝑝 → (DECID 𝑥𝐴DECID 𝑝𝐴))
18 nninfdcex.dc . . . . . 6 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
1918ad2antrr 488 . . . . 5 (((𝜑𝑎𝐴) ∧ 𝑝 ∈ (1...𝑎)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
20 elfznn 10040 . . . . . 6 (𝑝 ∈ (1...𝑎) → 𝑝 ∈ ℕ)
2120adantl 277 . . . . 5 (((𝜑𝑎𝐴) ∧ 𝑝 ∈ (1...𝑎)) → 𝑝 ∈ ℕ)
2217, 19, 21rspcdva 2846 . . . 4 (((𝜑𝑎𝐴) ∧ 𝑝 ∈ (1...𝑎)) → DECID 𝑝𝐴)
235, 6, 15, 22infssuzex 11933 . . 3 ((𝜑𝑎𝐴) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦)))
2413raleqdv 2678 . . . . . 6 (𝜑 → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴} ¬ 𝑦 < 𝑥))
2513rexeqdv 2679 . . . . . . . 8 (𝜑 → (∃𝑧𝐴 𝑧 < 𝑦 ↔ ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦))
2625imbi2d 230 . . . . . . 7 (𝜑 → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦)))
2726ralbidv 2477 . . . . . 6 (𝜑 → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦)))
2824, 27anbi12d 473 . . . . 5 (𝜑 → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦))))
2928rexbidv 2478 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦))))
3029adantr 276 . . 3 ((𝜑𝑎𝐴) → (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦))))
3123, 30mpbird 167 . 2 ((𝜑𝑎𝐴) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
324, 31exlimddv 1898 1 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 834   = wceq 1353  wex 1492  wcel 2148  wral 2455  wrex 2456  {crab 2459  cin 3128  wss 3129   class class class wbr 4000  cfv 5212  (class class class)co 5869  cr 7801  1c1 7803   < clt 7982  cn 8908  cuz 9517  ...cfz 9995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996  df-fzo 10129
This theorem is referenced by:  nninfdclemp1  12434
  Copyright terms: Public domain W3C validator