ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdcex GIF version

Theorem nninfdcex 10452
Description: A decidable set of natural numbers has an infimum. (Contributed by Jim Kingdon, 28-Sep-2024.)
Hypotheses
Ref Expression
nninfdcex.a (𝜑𝐴 ⊆ ℕ)
nninfdcex.dc (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
nninfdcex.m (𝜑 → ∃𝑦 𝑦𝐴)
Assertion
Ref Expression
nninfdcex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥,𝑦
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem nninfdcex
Dummy variables 𝑎 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdcex.m . . 3 (𝜑 → ∃𝑦 𝑦𝐴)
2 eleq1w 2290 . . . 4 (𝑦 = 𝑎 → (𝑦𝐴𝑎𝐴))
32cbvexv 1965 . . 3 (∃𝑦 𝑦𝐴 ↔ ∃𝑎 𝑎𝐴)
41, 3sylib 122 . 2 (𝜑 → ∃𝑎 𝑎𝐴)
5 1zzd 9469 . . . 4 ((𝜑𝑎𝐴) → 1 ∈ ℤ)
6 eqid 2229 . . . 4 {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴} = {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}
7 nninfdcex.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℕ)
8 nnuz 9754 . . . . . . . . 9 ℕ = (ℤ‘1)
97, 8sseqtrdi 3272 . . . . . . . 8 (𝜑𝐴 ⊆ (ℤ‘1))
10 dfss5 3409 . . . . . . . 8 (𝐴 ⊆ (ℤ‘1) ↔ 𝐴 = ((ℤ‘1) ∩ 𝐴))
119, 10sylib 122 . . . . . . 7 (𝜑𝐴 = ((ℤ‘1) ∩ 𝐴))
12 dfin5 3204 . . . . . . 7 ((ℤ‘1) ∩ 𝐴) = {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}
1311, 12eqtrdi 2278 . . . . . 6 (𝜑𝐴 = {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴})
1413eleq2d 2299 . . . . 5 (𝜑 → (𝑎𝐴𝑎 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}))
1514biimpa 296 . . . 4 ((𝜑𝑎𝐴) → 𝑎 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴})
16 eleq1w 2290 . . . . . 6 (𝑥 = 𝑝 → (𝑥𝐴𝑝𝐴))
1716dcbid 843 . . . . 5 (𝑥 = 𝑝 → (DECID 𝑥𝐴DECID 𝑝𝐴))
18 nninfdcex.dc . . . . . 6 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
1918ad2antrr 488 . . . . 5 (((𝜑𝑎𝐴) ∧ 𝑝 ∈ (1...𝑎)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
20 elfznn 10246 . . . . . 6 (𝑝 ∈ (1...𝑎) → 𝑝 ∈ ℕ)
2120adantl 277 . . . . 5 (((𝜑𝑎𝐴) ∧ 𝑝 ∈ (1...𝑎)) → 𝑝 ∈ ℕ)
2217, 19, 21rspcdva 2912 . . . 4 (((𝜑𝑎𝐴) ∧ 𝑝 ∈ (1...𝑎)) → DECID 𝑝𝐴)
235, 6, 15, 22infssuzex 10448 . . 3 ((𝜑𝑎𝐴) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦)))
2413raleqdv 2734 . . . . . 6 (𝜑 → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴} ¬ 𝑦 < 𝑥))
2513rexeqdv 2735 . . . . . . . 8 (𝜑 → (∃𝑧𝐴 𝑧 < 𝑦 ↔ ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦))
2625imbi2d 230 . . . . . . 7 (𝜑 → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦)))
2726ralbidv 2530 . . . . . 6 (𝜑 → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦)))
2824, 27anbi12d 473 . . . . 5 (𝜑 → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦))))
2928rexbidv 2531 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦))))
3029adantr 276 . . 3 ((𝜑𝑎𝐴) → (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑝 ∈ (ℤ‘1) ∣ 𝑝𝐴}𝑧 < 𝑦))))
3123, 30mpbird 167 . 2 ((𝜑𝑎𝐴) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
324, 31exlimddv 1945 1 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 839   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  {crab 2512  cin 3196  wss 3197   class class class wbr 4082  cfv 5317  (class class class)co 6000  cr 7994  1c1 7996   < clt 8177  cn 9106  cuz 9718  ...cfz 10200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335
This theorem is referenced by:  nninfdclemp1  13016
  Copyright terms: Public domain W3C validator