ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdif GIF version

Theorem resdif 5526
Description: The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
resdif ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))

Proof of Theorem resdif
StepHypRef Expression
1 fofun 5481 . . . . . 6 ((𝐹𝐴):𝐴onto𝐶 → Fun (𝐹𝐴))
2 difss 3289 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
3 fof 5480 . . . . . . . 8 ((𝐹𝐴):𝐴onto𝐶 → (𝐹𝐴):𝐴𝐶)
4 fdm 5413 . . . . . . . 8 ((𝐹𝐴):𝐴𝐶 → dom (𝐹𝐴) = 𝐴)
53, 4syl 14 . . . . . . 7 ((𝐹𝐴):𝐴onto𝐶 → dom (𝐹𝐴) = 𝐴)
62, 5sseqtrrid 3234 . . . . . 6 ((𝐹𝐴):𝐴onto𝐶 → (𝐴𝐵) ⊆ dom (𝐹𝐴))
7 fores 5490 . . . . . 6 ((Fun (𝐹𝐴) ∧ (𝐴𝐵) ⊆ dom (𝐹𝐴)) → ((𝐹𝐴) ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)))
81, 6, 7syl2anc 411 . . . . 5 ((𝐹𝐴):𝐴onto𝐶 → ((𝐹𝐴) ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)))
9 resres 4958 . . . . . . . 8 ((𝐹𝐴) ↾ (𝐴𝐵)) = (𝐹 ↾ (𝐴 ∩ (𝐴𝐵)))
10 indif 3406 . . . . . . . . 9 (𝐴 ∩ (𝐴𝐵)) = (𝐴𝐵)
1110reseq2i 4943 . . . . . . . 8 (𝐹 ↾ (𝐴 ∩ (𝐴𝐵))) = (𝐹 ↾ (𝐴𝐵))
129, 11eqtri 2217 . . . . . . 7 ((𝐹𝐴) ↾ (𝐴𝐵)) = (𝐹 ↾ (𝐴𝐵))
13 foeq1 5476 . . . . . . 7 (((𝐹𝐴) ↾ (𝐴𝐵)) = (𝐹 ↾ (𝐴𝐵)) → (((𝐹𝐴) ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵))))
1412, 13ax-mp 5 . . . . . 6 (((𝐹𝐴) ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)))
1512rneqi 4894 . . . . . . . 8 ran ((𝐹𝐴) ↾ (𝐴𝐵)) = ran (𝐹 ↾ (𝐴𝐵))
16 df-ima 4676 . . . . . . . 8 ((𝐹𝐴) “ (𝐴𝐵)) = ran ((𝐹𝐴) ↾ (𝐴𝐵))
17 df-ima 4676 . . . . . . . 8 (𝐹 “ (𝐴𝐵)) = ran (𝐹 ↾ (𝐴𝐵))
1815, 16, 173eqtr4i 2227 . . . . . . 7 ((𝐹𝐴) “ (𝐴𝐵)) = (𝐹 “ (𝐴𝐵))
19 foeq3 5478 . . . . . . 7 (((𝐹𝐴) “ (𝐴𝐵)) = (𝐹 “ (𝐴𝐵)) → ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐹 “ (𝐴𝐵))))
2018, 19ax-mp 5 . . . . . 6 ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐹 “ (𝐴𝐵)))
2114, 20bitri 184 . . . . 5 (((𝐹𝐴) ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐹 “ (𝐴𝐵)))
228, 21sylib 122 . . . 4 ((𝐹𝐴):𝐴onto𝐶 → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐹 “ (𝐴𝐵)))
23 funres11 5330 . . . 4 (Fun 𝐹 → Fun (𝐹 ↾ (𝐴𝐵)))
24 dff1o3 5510 . . . . 5 ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐹 “ (𝐴𝐵)) ↔ ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐹 “ (𝐴𝐵)) ∧ Fun (𝐹 ↾ (𝐴𝐵))))
2524biimpri 133 . . . 4 (((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐹 “ (𝐴𝐵)) ∧ Fun (𝐹 ↾ (𝐴𝐵))) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐹 “ (𝐴𝐵)))
2622, 23, 25syl2anr 290 . . 3 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐹 “ (𝐴𝐵)))
27263adant3 1019 . 2 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐹 “ (𝐴𝐵)))
28 df-ima 4676 . . . . . . 7 (𝐹𝐴) = ran (𝐹𝐴)
29 forn 5483 . . . . . . 7 ((𝐹𝐴):𝐴onto𝐶 → ran (𝐹𝐴) = 𝐶)
3028, 29eqtrid 2241 . . . . . 6 ((𝐹𝐴):𝐴onto𝐶 → (𝐹𝐴) = 𝐶)
31 df-ima 4676 . . . . . . 7 (𝐹𝐵) = ran (𝐹𝐵)
32 forn 5483 . . . . . . 7 ((𝐹𝐵):𝐵onto𝐷 → ran (𝐹𝐵) = 𝐷)
3331, 32eqtrid 2241 . . . . . 6 ((𝐹𝐵):𝐵onto𝐷 → (𝐹𝐵) = 𝐷)
3430, 33anim12i 338 . . . . 5 (((𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → ((𝐹𝐴) = 𝐶 ∧ (𝐹𝐵) = 𝐷))
35 imadif 5338 . . . . . 6 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
36 difeq12 3276 . . . . . 6 (((𝐹𝐴) = 𝐶 ∧ (𝐹𝐵) = 𝐷) → ((𝐹𝐴) ∖ (𝐹𝐵)) = (𝐶𝐷))
3735, 36sylan9eq 2249 . . . . 5 ((Fun 𝐹 ∧ ((𝐹𝐴) = 𝐶 ∧ (𝐹𝐵) = 𝐷)) → (𝐹 “ (𝐴𝐵)) = (𝐶𝐷))
3834, 37sylan2 286 . . . 4 ((Fun 𝐹 ∧ ((𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷)) → (𝐹 “ (𝐴𝐵)) = (𝐶𝐷))
39383impb 1201 . . 3 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 “ (𝐴𝐵)) = (𝐶𝐷))
40 f1oeq3 5494 . . 3 ((𝐹 “ (𝐴𝐵)) = (𝐶𝐷) → ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐹 “ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷)))
4139, 40syl 14 . 2 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐹 “ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷)))
4227, 41mpbid 147 1 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  cdif 3154  cin 3156  wss 3157  ccnv 4662  dom cdm 4663  ran crn 4664  cres 4665  cima 4666  Fun wfun 5252  wf 5254  ontowfo 5256  1-1-ontowf1o 5257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265
This theorem is referenced by:  dif1en  6940
  Copyright terms: Public domain W3C validator