Proof of Theorem resdif
| Step | Hyp | Ref
| Expression |
| 1 | | fofun 5484 |
. . . . . 6
⊢ ((𝐹 ↾ 𝐴):𝐴–onto→𝐶 → Fun (𝐹 ↾ 𝐴)) |
| 2 | | difss 3290 |
. . . . . . 7
⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
| 3 | | fof 5483 |
. . . . . . . 8
⊢ ((𝐹 ↾ 𝐴):𝐴–onto→𝐶 → (𝐹 ↾ 𝐴):𝐴⟶𝐶) |
| 4 | | fdm 5416 |
. . . . . . . 8
⊢ ((𝐹 ↾ 𝐴):𝐴⟶𝐶 → dom (𝐹 ↾ 𝐴) = 𝐴) |
| 5 | 3, 4 | syl 14 |
. . . . . . 7
⊢ ((𝐹 ↾ 𝐴):𝐴–onto→𝐶 → dom (𝐹 ↾ 𝐴) = 𝐴) |
| 6 | 2, 5 | sseqtrrid 3235 |
. . . . . 6
⊢ ((𝐹 ↾ 𝐴):𝐴–onto→𝐶 → (𝐴 ∖ 𝐵) ⊆ dom (𝐹 ↾ 𝐴)) |
| 7 | | fores 5493 |
. . . . . 6
⊢ ((Fun
(𝐹 ↾ 𝐴) ∧ (𝐴 ∖ 𝐵) ⊆ dom (𝐹 ↾ 𝐴)) → ((𝐹 ↾ 𝐴) ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–onto→((𝐹 ↾ 𝐴) “ (𝐴 ∖ 𝐵))) |
| 8 | 1, 6, 7 | syl2anc 411 |
. . . . 5
⊢ ((𝐹 ↾ 𝐴):𝐴–onto→𝐶 → ((𝐹 ↾ 𝐴) ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–onto→((𝐹 ↾ 𝐴) “ (𝐴 ∖ 𝐵))) |
| 9 | | resres 4959 |
. . . . . . . 8
⊢ ((𝐹 ↾ 𝐴) ↾ (𝐴 ∖ 𝐵)) = (𝐹 ↾ (𝐴 ∩ (𝐴 ∖ 𝐵))) |
| 10 | | indif 3407 |
. . . . . . . . 9
⊢ (𝐴 ∩ (𝐴 ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
| 11 | 10 | reseq2i 4944 |
. . . . . . . 8
⊢ (𝐹 ↾ (𝐴 ∩ (𝐴 ∖ 𝐵))) = (𝐹 ↾ (𝐴 ∖ 𝐵)) |
| 12 | 9, 11 | eqtri 2217 |
. . . . . . 7
⊢ ((𝐹 ↾ 𝐴) ↾ (𝐴 ∖ 𝐵)) = (𝐹 ↾ (𝐴 ∖ 𝐵)) |
| 13 | | foeq1 5479 |
. . . . . . 7
⊢ (((𝐹 ↾ 𝐴) ↾ (𝐴 ∖ 𝐵)) = (𝐹 ↾ (𝐴 ∖ 𝐵)) → (((𝐹 ↾ 𝐴) ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–onto→((𝐹 ↾ 𝐴) “ (𝐴 ∖ 𝐵)) ↔ (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–onto→((𝐹 ↾ 𝐴) “ (𝐴 ∖ 𝐵)))) |
| 14 | 12, 13 | ax-mp 5 |
. . . . . 6
⊢ (((𝐹 ↾ 𝐴) ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–onto→((𝐹 ↾ 𝐴) “ (𝐴 ∖ 𝐵)) ↔ (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–onto→((𝐹 ↾ 𝐴) “ (𝐴 ∖ 𝐵))) |
| 15 | 12 | rneqi 4895 |
. . . . . . . 8
⊢ ran
((𝐹 ↾ 𝐴) ↾ (𝐴 ∖ 𝐵)) = ran (𝐹 ↾ (𝐴 ∖ 𝐵)) |
| 16 | | df-ima 4677 |
. . . . . . . 8
⊢ ((𝐹 ↾ 𝐴) “ (𝐴 ∖ 𝐵)) = ran ((𝐹 ↾ 𝐴) ↾ (𝐴 ∖ 𝐵)) |
| 17 | | df-ima 4677 |
. . . . . . . 8
⊢ (𝐹 “ (𝐴 ∖ 𝐵)) = ran (𝐹 ↾ (𝐴 ∖ 𝐵)) |
| 18 | 15, 16, 17 | 3eqtr4i 2227 |
. . . . . . 7
⊢ ((𝐹 ↾ 𝐴) “ (𝐴 ∖ 𝐵)) = (𝐹 “ (𝐴 ∖ 𝐵)) |
| 19 | | foeq3 5481 |
. . . . . . 7
⊢ (((𝐹 ↾ 𝐴) “ (𝐴 ∖ 𝐵)) = (𝐹 “ (𝐴 ∖ 𝐵)) → ((𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–onto→((𝐹 ↾ 𝐴) “ (𝐴 ∖ 𝐵)) ↔ (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–onto→(𝐹 “ (𝐴 ∖ 𝐵)))) |
| 20 | 18, 19 | ax-mp 5 |
. . . . . 6
⊢ ((𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–onto→((𝐹 ↾ 𝐴) “ (𝐴 ∖ 𝐵)) ↔ (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–onto→(𝐹 “ (𝐴 ∖ 𝐵))) |
| 21 | 14, 20 | bitri 184 |
. . . . 5
⊢ (((𝐹 ↾ 𝐴) ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–onto→((𝐹 ↾ 𝐴) “ (𝐴 ∖ 𝐵)) ↔ (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–onto→(𝐹 “ (𝐴 ∖ 𝐵))) |
| 22 | 8, 21 | sylib 122 |
. . . 4
⊢ ((𝐹 ↾ 𝐴):𝐴–onto→𝐶 → (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–onto→(𝐹 “ (𝐴 ∖ 𝐵))) |
| 23 | | funres11 5331 |
. . . 4
⊢ (Fun
◡𝐹 → Fun ◡(𝐹 ↾ (𝐴 ∖ 𝐵))) |
| 24 | | dff1o3 5513 |
. . . . 5
⊢ ((𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–1-1-onto→(𝐹 “ (𝐴 ∖ 𝐵)) ↔ ((𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–onto→(𝐹 “ (𝐴 ∖ 𝐵)) ∧ Fun ◡(𝐹 ↾ (𝐴 ∖ 𝐵)))) |
| 25 | 24 | biimpri 133 |
. . . 4
⊢ (((𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–onto→(𝐹 “ (𝐴 ∖ 𝐵)) ∧ Fun ◡(𝐹 ↾ (𝐴 ∖ 𝐵))) → (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–1-1-onto→(𝐹 “ (𝐴 ∖ 𝐵))) |
| 26 | 22, 23, 25 | syl2anr 290 |
. . 3
⊢ ((Fun
◡𝐹 ∧ (𝐹 ↾ 𝐴):𝐴–onto→𝐶) → (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–1-1-onto→(𝐹 “ (𝐴 ∖ 𝐵))) |
| 27 | 26 | 3adant3 1019 |
. 2
⊢ ((Fun
◡𝐹 ∧ (𝐹 ↾ 𝐴):𝐴–onto→𝐶 ∧ (𝐹 ↾ 𝐵):𝐵–onto→𝐷) → (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–1-1-onto→(𝐹 “ (𝐴 ∖ 𝐵))) |
| 28 | | df-ima 4677 |
. . . . . . 7
⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) |
| 29 | | forn 5486 |
. . . . . . 7
⊢ ((𝐹 ↾ 𝐴):𝐴–onto→𝐶 → ran (𝐹 ↾ 𝐴) = 𝐶) |
| 30 | 28, 29 | eqtrid 2241 |
. . . . . 6
⊢ ((𝐹 ↾ 𝐴):𝐴–onto→𝐶 → (𝐹 “ 𝐴) = 𝐶) |
| 31 | | df-ima 4677 |
. . . . . . 7
⊢ (𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) |
| 32 | | forn 5486 |
. . . . . . 7
⊢ ((𝐹 ↾ 𝐵):𝐵–onto→𝐷 → ran (𝐹 ↾ 𝐵) = 𝐷) |
| 33 | 31, 32 | eqtrid 2241 |
. . . . . 6
⊢ ((𝐹 ↾ 𝐵):𝐵–onto→𝐷 → (𝐹 “ 𝐵) = 𝐷) |
| 34 | 30, 33 | anim12i 338 |
. . . . 5
⊢ (((𝐹 ↾ 𝐴):𝐴–onto→𝐶 ∧ (𝐹 ↾ 𝐵):𝐵–onto→𝐷) → ((𝐹 “ 𝐴) = 𝐶 ∧ (𝐹 “ 𝐵) = 𝐷)) |
| 35 | | imadif 5339 |
. . . . . 6
⊢ (Fun
◡𝐹 → (𝐹 “ (𝐴 ∖ 𝐵)) = ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵))) |
| 36 | | difeq12 3277 |
. . . . . 6
⊢ (((𝐹 “ 𝐴) = 𝐶 ∧ (𝐹 “ 𝐵) = 𝐷) → ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) = (𝐶 ∖ 𝐷)) |
| 37 | 35, 36 | sylan9eq 2249 |
. . . . 5
⊢ ((Fun
◡𝐹 ∧ ((𝐹 “ 𝐴) = 𝐶 ∧ (𝐹 “ 𝐵) = 𝐷)) → (𝐹 “ (𝐴 ∖ 𝐵)) = (𝐶 ∖ 𝐷)) |
| 38 | 34, 37 | sylan2 286 |
. . . 4
⊢ ((Fun
◡𝐹 ∧ ((𝐹 ↾ 𝐴):𝐴–onto→𝐶 ∧ (𝐹 ↾ 𝐵):𝐵–onto→𝐷)) → (𝐹 “ (𝐴 ∖ 𝐵)) = (𝐶 ∖ 𝐷)) |
| 39 | 38 | 3impb 1201 |
. . 3
⊢ ((Fun
◡𝐹 ∧ (𝐹 ↾ 𝐴):𝐴–onto→𝐶 ∧ (𝐹 ↾ 𝐵):𝐵–onto→𝐷) → (𝐹 “ (𝐴 ∖ 𝐵)) = (𝐶 ∖ 𝐷)) |
| 40 | | f1oeq3 5497 |
. . 3
⊢ ((𝐹 “ (𝐴 ∖ 𝐵)) = (𝐶 ∖ 𝐷) → ((𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–1-1-onto→(𝐹 “ (𝐴 ∖ 𝐵)) ↔ (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–1-1-onto→(𝐶 ∖ 𝐷))) |
| 41 | 39, 40 | syl 14 |
. 2
⊢ ((Fun
◡𝐹 ∧ (𝐹 ↾ 𝐴):𝐴–onto→𝐶 ∧ (𝐹 ↾ 𝐵):𝐵–onto→𝐷) → ((𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–1-1-onto→(𝐹 “ (𝐴 ∖ 𝐵)) ↔ (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–1-1-onto→(𝐶 ∖ 𝐷))) |
| 42 | 27, 41 | mpbid 147 |
1
⊢ ((Fun
◡𝐹 ∧ (𝐹 ↾ 𝐴):𝐴–onto→𝐶 ∧ (𝐹 ↾ 𝐵):𝐵–onto→𝐷) → (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–1-1-onto→(𝐶 ∖ 𝐷)) |