Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan9eq | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
sylan9eq.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
sylan9eq.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sylan9eq | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9eq.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sylan9eq.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
3 | eqtr 2183 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) | |
4 | 1, 2, 3 | syl2an 287 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: sylan9req 2219 sylan9eqr 2220 difeq12 3234 uneq12 3270 ineq12 3317 ifeq12 3535 preq12 3654 prprc 3685 preq12b 3749 opeq12 3759 xpeq12 4622 nfimad 4954 coi2 5119 funimass1 5264 f1orescnv 5447 resdif 5453 oveq12 5850 cbvmpov 5918 ovmpog 5972 eqopi 6137 fmpoco 6180 nnaordex 6491 map0g 6650 xpcomco 6788 xpmapenlem 6811 phplem3 6816 phplem4 6817 sbthlemi5 6922 addcmpblnq 7304 ltrnqg 7357 enq0ref 7370 addcmpblnq0 7380 distrlem4prl 7521 distrlem4pru 7522 recexgt0sr 7710 axcnre 7818 cnegexlem2 8070 cnegexlem3 8071 recexap 8546 xaddpnf2 9779 xaddmnf2 9781 rexadd 9784 xaddnemnf 9789 xaddnepnf 9790 xposdif 9814 frec2uzrand 10336 seqeq3 10381 shftcan1 10772 remul2 10811 immul2 10818 fprodssdc 11527 ef0lem 11597 efieq1re 11708 dvdsnegb 11744 dvdscmul 11754 dvds2ln 11760 dvds2add 11761 dvds2sub 11762 gcdn0val 11890 rpmulgcd 11955 lcmval 11991 lcmn0val 11994 odzval 12169 pcmpt 12269 isopn3 12725 dvexp 13275 dvexp2 13276 lgsval3 13519 lgsdinn0 13549 subctctexmid 13841 |
Copyright terms: Public domain | W3C validator |