| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sylan9eq | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) | 
| Ref | Expression | 
|---|---|
| sylan9eq.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| sylan9eq.2 | ⊢ (𝜓 → 𝐵 = 𝐶) | 
| Ref | Expression | 
|---|---|
| sylan9eq | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sylan9eq.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sylan9eq.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
| 3 | eqtr 2214 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) | |
| 4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: sylan9req 2250 sylan9eqr 2251 difeq12 3276 uneq12 3312 ineq12 3359 ifeq12 3577 preq12 3701 prprc 3732 preq12b 3800 opeq12 3810 xpeq12 4682 nfimad 5018 coi2 5186 funimass1 5335 f1orescnv 5520 resdif 5526 oveq12 5931 cbvmpov 6002 ovmpog 6057 fvmpopr2d 6059 eqopi 6230 fmpoco 6274 nnaordex 6586 map0g 6747 xpcomco 6885 xpmapenlem 6910 phplem3 6915 phplem4 6916 sbthlemi5 7027 addcmpblnq 7434 ltrnqg 7487 enq0ref 7500 addcmpblnq0 7510 distrlem4prl 7651 distrlem4pru 7652 recexgt0sr 7840 axcnre 7948 cnegexlem2 8202 cnegexlem3 8203 recexap 8680 xaddpnf2 9922 xaddmnf2 9924 rexadd 9927 xaddnemnf 9932 xaddnepnf 9933 xposdif 9957 frec2uzrand 10497 seqeq3 10544 seqf1oglem2 10612 seqf1og 10613 shftcan1 10999 remul2 11038 immul2 11045 fprodssdc 11755 ef0lem 11825 efieq1re 11937 dvdsnegb 11973 dvdscmul 11983 dvds2ln 11989 dvds2add 11990 dvds2sub 11991 gcdn0val 12128 rpmulgcd 12193 lcmval 12231 lcmn0val 12234 odzval 12410 pcmpt 12512 grpsubval 13178 mulgnn0gsum 13258 crngpropd 13595 opprringbg 13636 dvdsrtr 13657 isopn3 14361 dvexp 14947 dvexp2 14948 elply2 14971 lgsval3 15259 lgsdinn0 15289 subctctexmid 15645 | 
| Copyright terms: Public domain | W3C validator |