![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylan9eq | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
sylan9eq.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
sylan9eq.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sylan9eq | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9eq.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sylan9eq.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
3 | eqtr 2105 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) | |
4 | 1, 2, 3 | syl2an 283 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1289 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-4 1445 ax-17 1464 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-cleq 2081 |
This theorem is referenced by: sylan9req 2141 sylan9eqr 2142 difeq12 3113 uneq12 3149 ineq12 3196 ifeq12 3407 preq12 3521 prprc 3552 preq12b 3614 opeq12 3624 xpeq12 4457 nfimad 4783 coi2 4947 funimass1 5091 f1orescnv 5269 resdif 5275 oveq12 5661 cbvmpt2v 5728 ovmpt2g 5779 eqopi 5942 fmpt2co 5981 nnaordex 6286 map0g 6445 xpcomco 6542 xpmapenlem 6565 phplem3 6570 phplem4 6571 sbthlemi5 6670 addcmpblnq 6926 ltrnqg 6979 enq0ref 6992 addcmpblnq0 7002 distrlem4prl 7143 distrlem4pru 7144 recexgt0sr 7319 axcnre 7416 cnegexlem2 7658 cnegexlem3 7659 recexap 8122 frec2uzrand 9812 iseqeq3 9860 shftcan1 10268 remul2 10307 immul2 10314 ef0lem 10950 efieq1re 11061 dvdsnegb 11091 dvdscmul 11101 dvds2ln 11107 dvds2add 11108 dvds2sub 11109 gcdn0val 11231 rpmulgcd 11293 lcmval 11323 lcmn0val 11326 |
Copyright terms: Public domain | W3C validator |