| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9eq | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| sylan9eq.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sylan9eq.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sylan9eq | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9eq.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sylan9eq.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
| 3 | eqtr 2224 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) | |
| 4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: sylan9req 2260 sylan9eqr 2261 difeq12 3290 uneq12 3326 ineq12 3373 ifeq12 3592 preq12 3717 prprc 3748 preq12b 3817 opeq12 3827 xpeq12 4702 nfimad 5040 coi2 5208 funimass1 5360 f1orescnv 5550 resdif 5556 oveq12 5966 cbvmpov 6038 ovmpog 6093 fvmpopr2d 6095 eqopi 6271 fmpoco 6315 nnaordex 6627 map0g 6788 xpcomco 6936 xpmapenlem 6961 phplem3 6966 phplem4 6967 sbthlemi5 7078 addcmpblnq 7500 ltrnqg 7553 enq0ref 7566 addcmpblnq0 7576 distrlem4prl 7717 distrlem4pru 7718 recexgt0sr 7906 axcnre 8014 cnegexlem2 8268 cnegexlem3 8269 recexap 8746 xaddpnf2 9989 xaddmnf2 9991 rexadd 9994 xaddnemnf 9999 xaddnepnf 10000 xposdif 10024 frec2uzrand 10572 seqeq3 10619 seqf1oglem2 10687 seqf1og 10688 lsw1 11065 shftcan1 11220 remul2 11259 immul2 11266 fprodssdc 11976 ef0lem 12046 efieq1re 12158 dvdsnegb 12194 dvdscmul 12204 dvds2ln 12210 dvds2add 12211 dvds2sub 12212 gcdn0val 12357 rpmulgcd 12422 lcmval 12460 lcmn0val 12463 odzval 12639 pcmpt 12741 grpsubval 13453 mulgnn0gsum 13539 crngpropd 13876 opprringbg 13917 dvdsrtr 13938 isopn3 14672 dvexp 15258 dvexp2 15259 elply2 15282 lgsval3 15570 lgsdinn0 15600 incistruhgr 15761 subctctexmid 16078 |
| Copyright terms: Public domain | W3C validator |