| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9eq | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| sylan9eq.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sylan9eq.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sylan9eq | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9eq.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sylan9eq.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
| 3 | eqtr 2214 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) | |
| 4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: sylan9req 2250 sylan9eqr 2251 difeq12 3277 uneq12 3313 ineq12 3360 ifeq12 3578 preq12 3702 prprc 3733 preq12b 3801 opeq12 3811 xpeq12 4683 nfimad 5019 coi2 5187 funimass1 5336 f1orescnv 5521 resdif 5527 oveq12 5932 cbvmpov 6003 ovmpog 6058 fvmpopr2d 6060 eqopi 6231 fmpoco 6275 nnaordex 6587 map0g 6748 xpcomco 6886 xpmapenlem 6911 phplem3 6916 phplem4 6917 sbthlemi5 7028 addcmpblnq 7436 ltrnqg 7489 enq0ref 7502 addcmpblnq0 7512 distrlem4prl 7653 distrlem4pru 7654 recexgt0sr 7842 axcnre 7950 cnegexlem2 8204 cnegexlem3 8205 recexap 8682 xaddpnf2 9924 xaddmnf2 9926 rexadd 9929 xaddnemnf 9934 xaddnepnf 9935 xposdif 9959 frec2uzrand 10499 seqeq3 10546 seqf1oglem2 10614 seqf1og 10615 shftcan1 11001 remul2 11040 immul2 11047 fprodssdc 11757 ef0lem 11827 efieq1re 11939 dvdsnegb 11975 dvdscmul 11985 dvds2ln 11991 dvds2add 11992 dvds2sub 11993 gcdn0val 12138 rpmulgcd 12203 lcmval 12241 lcmn0val 12244 odzval 12420 pcmpt 12522 grpsubval 13188 mulgnn0gsum 13268 crngpropd 13605 opprringbg 13646 dvdsrtr 13667 isopn3 14371 dvexp 14957 dvexp2 14958 elply2 14981 lgsval3 15269 lgsdinn0 15299 subctctexmid 15655 |
| Copyright terms: Public domain | W3C validator |