| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9eq | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| sylan9eq.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sylan9eq.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sylan9eq | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9eq.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sylan9eq.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
| 3 | eqtr 2222 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) | |
| 4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: sylan9req 2258 sylan9eqr 2259 difeq12 3285 uneq12 3321 ineq12 3368 ifeq12 3586 preq12 3711 prprc 3742 preq12b 3810 opeq12 3820 xpeq12 4693 nfimad 5030 coi2 5198 funimass1 5350 f1orescnv 5537 resdif 5543 oveq12 5952 cbvmpov 6024 ovmpog 6079 fvmpopr2d 6081 eqopi 6257 fmpoco 6301 nnaordex 6613 map0g 6774 xpcomco 6920 xpmapenlem 6945 phplem3 6950 phplem4 6951 sbthlemi5 7062 addcmpblnq 7479 ltrnqg 7532 enq0ref 7545 addcmpblnq0 7555 distrlem4prl 7696 distrlem4pru 7697 recexgt0sr 7885 axcnre 7993 cnegexlem2 8247 cnegexlem3 8248 recexap 8725 xaddpnf2 9968 xaddmnf2 9970 rexadd 9973 xaddnemnf 9978 xaddnepnf 9979 xposdif 10003 frec2uzrand 10548 seqeq3 10595 seqf1oglem2 10663 seqf1og 10664 lsw1 11041 shftcan1 11087 remul2 11126 immul2 11133 fprodssdc 11843 ef0lem 11913 efieq1re 12025 dvdsnegb 12061 dvdscmul 12071 dvds2ln 12077 dvds2add 12078 dvds2sub 12079 gcdn0val 12224 rpmulgcd 12289 lcmval 12327 lcmn0val 12330 odzval 12506 pcmpt 12608 grpsubval 13320 mulgnn0gsum 13406 crngpropd 13743 opprringbg 13784 dvdsrtr 13805 isopn3 14539 dvexp 15125 dvexp2 15126 elply2 15149 lgsval3 15437 lgsdinn0 15467 subctctexmid 15870 |
| Copyright terms: Public domain | W3C validator |