| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9eq | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| sylan9eq.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sylan9eq.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sylan9eq | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9eq.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sylan9eq.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
| 3 | eqtr 2214 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) | |
| 4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: sylan9req 2250 sylan9eqr 2251 difeq12 3277 uneq12 3313 ineq12 3360 ifeq12 3578 preq12 3702 prprc 3733 preq12b 3801 opeq12 3811 xpeq12 4683 nfimad 5019 coi2 5187 funimass1 5336 f1orescnv 5523 resdif 5529 oveq12 5934 cbvmpov 6006 ovmpog 6061 fvmpopr2d 6063 eqopi 6239 fmpoco 6283 nnaordex 6595 map0g 6756 xpcomco 6894 xpmapenlem 6919 phplem3 6924 phplem4 6925 sbthlemi5 7036 addcmpblnq 7453 ltrnqg 7506 enq0ref 7519 addcmpblnq0 7529 distrlem4prl 7670 distrlem4pru 7671 recexgt0sr 7859 axcnre 7967 cnegexlem2 8221 cnegexlem3 8222 recexap 8699 xaddpnf2 9941 xaddmnf2 9943 rexadd 9946 xaddnemnf 9951 xaddnepnf 9952 xposdif 9976 frec2uzrand 10516 seqeq3 10563 seqf1oglem2 10631 seqf1og 10632 shftcan1 11018 remul2 11057 immul2 11064 fprodssdc 11774 ef0lem 11844 efieq1re 11956 dvdsnegb 11992 dvdscmul 12002 dvds2ln 12008 dvds2add 12009 dvds2sub 12010 gcdn0val 12155 rpmulgcd 12220 lcmval 12258 lcmn0val 12261 odzval 12437 pcmpt 12539 grpsubval 13250 mulgnn0gsum 13336 crngpropd 13673 opprringbg 13714 dvdsrtr 13735 isopn3 14469 dvexp 15055 dvexp2 15056 elply2 15079 lgsval3 15367 lgsdinn0 15397 subctctexmid 15755 |
| Copyright terms: Public domain | W3C validator |