Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan9eq | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
sylan9eq.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
sylan9eq.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sylan9eq | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9eq.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sylan9eq.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
3 | eqtr 2175 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) | |
4 | 1, 2, 3 | syl2an 287 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-4 1490 ax-17 1506 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-cleq 2150 |
This theorem is referenced by: sylan9req 2211 sylan9eqr 2212 difeq12 3220 uneq12 3256 ineq12 3303 ifeq12 3521 preq12 3638 prprc 3669 preq12b 3733 opeq12 3743 xpeq12 4605 nfimad 4937 coi2 5102 funimass1 5247 f1orescnv 5430 resdif 5436 oveq12 5833 cbvmpov 5901 ovmpog 5955 eqopi 6120 fmpoco 6163 nnaordex 6474 map0g 6633 xpcomco 6771 xpmapenlem 6794 phplem3 6799 phplem4 6800 sbthlemi5 6905 addcmpblnq 7287 ltrnqg 7340 enq0ref 7353 addcmpblnq0 7363 distrlem4prl 7504 distrlem4pru 7505 recexgt0sr 7693 axcnre 7801 cnegexlem2 8051 cnegexlem3 8052 recexap 8527 xaddpnf2 9751 xaddmnf2 9753 rexadd 9756 xaddnemnf 9761 xaddnepnf 9762 xposdif 9786 frec2uzrand 10304 seqeq3 10349 shftcan1 10734 remul2 10773 immul2 10780 fprodssdc 11487 ef0lem 11557 efieq1re 11668 dvdsnegb 11704 dvdscmul 11714 dvds2ln 11720 dvds2add 11721 dvds2sub 11722 gcdn0val 11845 rpmulgcd 11910 lcmval 11940 lcmn0val 11943 odzval 12116 isopn3 12536 dvexp 13086 dvexp2 13087 subctctexmid 13584 |
Copyright terms: Public domain | W3C validator |