| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9eq | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| sylan9eq.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sylan9eq.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sylan9eq | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9eq.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sylan9eq.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
| 3 | eqtr 2247 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) | |
| 4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: sylan9req 2283 sylan9eqr 2284 difeq12 3317 uneq12 3353 ineq12 3400 ifeq12 3619 preq12 3745 prprc 3776 preq12b 3847 opeq12 3858 xpeq12 4737 nfimad 5076 coi2 5244 funimass1 5397 f1orescnv 5587 resdif 5593 oveq12 6009 cbvmpov 6083 ovmpog 6138 fvmpopr2d 6140 eqopi 6316 fmpoco 6360 nnaordex 6672 map0g 6833 xpcomco 6981 xpmapenlem 7006 phplem3 7011 phplem4 7012 sbthlemi5 7124 addcmpblnq 7550 ltrnqg 7603 enq0ref 7616 addcmpblnq0 7626 distrlem4prl 7767 distrlem4pru 7768 recexgt0sr 7956 axcnre 8064 cnegexlem2 8318 cnegexlem3 8319 recexap 8796 xaddpnf2 10039 xaddmnf2 10041 rexadd 10044 xaddnemnf 10049 xaddnepnf 10050 xposdif 10074 frec2uzrand 10622 seqeq3 10669 seqf1oglem2 10737 seqf1og 10738 lsw1 11116 swrdccat 11262 ccats1pfxeqbi 11269 shftcan1 11340 remul2 11379 immul2 11386 fprodssdc 12096 ef0lem 12166 efieq1re 12278 dvdsnegb 12314 dvdscmul 12324 dvds2ln 12330 dvds2add 12331 dvds2sub 12332 gcdn0val 12477 rpmulgcd 12542 lcmval 12580 lcmn0val 12583 odzval 12759 pcmpt 12861 grpsubval 13574 mulgnn0gsum 13660 crngpropd 13997 opprringbg 14038 dvdsrtr 14059 isopn3 14793 dvexp 15379 dvexp2 15380 elply2 15403 lgsval3 15691 lgsdinn0 15721 incistruhgr 15884 subctctexmid 16325 |
| Copyright terms: Public domain | W3C validator |