Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syldan | GIF version |
Description: A syllogism deduction with conjoined antecents. (Contributed by NM, 24-Feb-2005.) (Proof shortened by Wolf Lammen, 6-Apr-2013.) |
Ref | Expression |
---|---|
syldan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
syldan.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syldan | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syldan.1 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | syldan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
3 | 2 | expcom 115 | . . 3 ⊢ (𝜒 → (𝜑 → 𝜃)) |
4 | 3 | adantrd 277 | . 2 ⊢ (𝜒 → ((𝜑 ∧ 𝜓) → 𝜃)) |
5 | 1, 4 | mpcom 36 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Copyright terms: Public domain | W3C validator |