| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syldan | GIF version | ||
| Description: A syllogism deduction with conjoined antecents. (Contributed by NM, 24-Feb-2005.) (Proof shortened by Wolf Lammen, 6-Apr-2013.) |
| Ref | Expression |
|---|---|
| syldan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| syldan.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syldan | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syldan.1 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | syldan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | expcom 116 | . . 3 ⊢ (𝜒 → (𝜑 → 𝜃)) |
| 4 | 3 | adantrd 279 | . 2 ⊢ (𝜒 → ((𝜑 ∧ 𝜓) → 𝜃)) |
| 5 | 1, 4 | mpcom 36 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Copyright terms: Public domain | W3C validator |