![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elab | GIF version |
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
elab.1 | ⊢ 𝐴 ∈ V |
elab.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elab | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | elab.1 | . 2 ⊢ 𝐴 ∈ V | |
3 | elab.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | elabf 2881 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {cab 2163 Vcvv 2738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 |
This theorem is referenced by: ralab 2898 rexab 2900 intab 3874 dfiin2g 3920 dfiunv2 3923 uniuni 4452 dcextest 4581 peano5 4598 finds 4600 finds2 4601 funcnvuni 5286 fun11iun 5483 elabrex 5759 abrexco 5760 mapval2 6678 ssenen 6851 snexxph 6949 sbthlem2 6957 indpi 7341 nqprm 7541 nqprrnd 7542 nqprdisj 7543 nqprloc 7544 nqprl 7550 nqpru 7551 cauappcvgprlem2 7659 caucvgprlem2 7679 peano1nnnn 7851 peano2nnnn 7852 1nn 8930 peano2nn 8931 dfuzi 9363 hashfacen 10816 shftfvalg 10827 ovshftex 10828 shftfval 10830 txdis1cn 13781 bj-ssom 14691 |
Copyright terms: Public domain | W3C validator |