| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elab | GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| elab.1 | ⊢ 𝐴 ∈ V |
| elab.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elab | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | elab.1 | . 2 ⊢ 𝐴 ∈ V | |
| 3 | elab.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | elabf 2907 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {cab 2182 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: ralab 2924 rexab 2926 intab 3903 dfiin2g 3949 dfiunv2 3952 uniuni 4486 dcextest 4617 peano5 4634 finds 4636 finds2 4637 funcnvuni 5327 fun11iun 5525 elabrex 5804 abrexco 5806 mapval2 6737 ssenen 6912 snexxph 7016 sbthlem2 7024 indpi 7409 nqprm 7609 nqprrnd 7610 nqprdisj 7611 nqprloc 7612 nqprl 7618 nqpru 7619 cauappcvgprlem2 7727 caucvgprlem2 7747 peano1nnnn 7919 peano2nnnn 7920 1nn 9001 peano2nn 9002 dfuzi 9436 hashfacen 10928 shftfvalg 10983 ovshftex 10984 shftfval 10986 4sqlemafi 12564 lss1d 13939 txdis1cn 14514 bj-ssom 15582 |
| Copyright terms: Public domain | W3C validator |