| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elab | GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| elab.1 | ⊢ 𝐴 ∈ V |
| elab.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elab | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | elab.1 | . 2 ⊢ 𝐴 ∈ V | |
| 3 | elab.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | elabf 2946 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {cab 2215 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 |
| This theorem is referenced by: ralab 2963 rexab 2965 intab 3952 dfiin2g 3998 dfiunv2 4001 uniuni 4542 dcextest 4673 peano5 4690 finds 4692 finds2 4693 funcnvuni 5390 fun11iun 5595 elabrex 5887 abrexco 5889 mapval2 6833 ssenen 7020 snexxph 7125 sbthlem2 7133 indpi 7537 nqprm 7737 nqprrnd 7738 nqprdisj 7739 nqprloc 7740 nqprl 7746 nqpru 7747 cauappcvgprlem2 7855 caucvgprlem2 7875 peano1nnnn 8047 peano2nnnn 8048 1nn 9129 peano2nn 9130 dfuzi 9565 hashfacen 11066 shftfvalg 11337 ovshftex 11338 shftfval 11340 4sqlemafi 12926 lss1d 14355 txdis1cn 14960 ushgredgedg 16032 ushgredgedgloop 16034 bj-ssom 16323 |
| Copyright terms: Public domain | W3C validator |