Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elab | GIF version |
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
elab.1 | ⊢ 𝐴 ∈ V |
elab.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elab | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | elab.1 | . 2 ⊢ 𝐴 ∈ V | |
3 | elab.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | elabf 2869 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 {cab 2151 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: ralab 2886 rexab 2888 intab 3853 dfiin2g 3899 dfiunv2 3902 uniuni 4429 dcextest 4558 peano5 4575 finds 4577 finds2 4578 funcnvuni 5257 fun11iun 5453 elabrex 5726 abrexco 5727 mapval2 6644 ssenen 6817 snexxph 6915 sbthlem2 6923 indpi 7283 nqprm 7483 nqprrnd 7484 nqprdisj 7485 nqprloc 7486 nqprl 7492 nqpru 7493 cauappcvgprlem2 7601 caucvgprlem2 7621 peano1nnnn 7793 peano2nnnn 7794 1nn 8868 peano2nn 8869 dfuzi 9301 hashfacen 10749 shftfvalg 10760 ovshftex 10761 shftfval 10763 txdis1cn 12918 bj-ssom 13818 |
Copyright terms: Public domain | W3C validator |