| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elab | GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| elab.1 | ⊢ 𝐴 ∈ V |
| elab.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elab | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1554 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | elab.1 | . 2 ⊢ 𝐴 ∈ V | |
| 3 | elab.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | elabf 2926 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ∈ wcel 2180 {cab 2195 Vcvv 2779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 |
| This theorem is referenced by: ralab 2943 rexab 2945 intab 3931 dfiin2g 3977 dfiunv2 3980 uniuni 4519 dcextest 4650 peano5 4667 finds 4669 finds2 4670 funcnvuni 5366 fun11iun 5569 elabrex 5854 abrexco 5856 mapval2 6795 ssenen 6980 snexxph 7085 sbthlem2 7093 indpi 7497 nqprm 7697 nqprrnd 7698 nqprdisj 7699 nqprloc 7700 nqprl 7706 nqpru 7707 cauappcvgprlem2 7815 caucvgprlem2 7835 peano1nnnn 8007 peano2nnnn 8008 1nn 9089 peano2nn 9090 dfuzi 9525 hashfacen 11025 shftfvalg 11295 ovshftex 11296 shftfval 11298 4sqlemafi 12884 lss1d 14312 txdis1cn 14917 ushgredgedg 15989 ushgredgedgloop 15991 bj-ssom 16209 |
| Copyright terms: Public domain | W3C validator |