![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elab | GIF version |
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
elab.1 | ⊢ 𝐴 ∈ V |
elab.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elab | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | elab.1 | . 2 ⊢ 𝐴 ∈ V | |
3 | elab.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | elabf 2903 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {cab 2179 Vcvv 2760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 |
This theorem is referenced by: ralab 2920 rexab 2922 intab 3899 dfiin2g 3945 dfiunv2 3948 uniuni 4482 dcextest 4613 peano5 4630 finds 4632 finds2 4633 funcnvuni 5323 fun11iun 5521 elabrex 5800 abrexco 5802 mapval2 6732 ssenen 6907 snexxph 7009 sbthlem2 7017 indpi 7402 nqprm 7602 nqprrnd 7603 nqprdisj 7604 nqprloc 7605 nqprl 7611 nqpru 7612 cauappcvgprlem2 7720 caucvgprlem2 7740 peano1nnnn 7912 peano2nnnn 7913 1nn 8993 peano2nn 8994 dfuzi 9427 hashfacen 10907 shftfvalg 10962 ovshftex 10963 shftfval 10965 4sqlemafi 12533 lss1d 13879 txdis1cn 14446 bj-ssom 15428 |
Copyright terms: Public domain | W3C validator |