| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elab | GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| elab.1 | ⊢ 𝐴 ∈ V |
| elab.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elab | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | elab.1 | . 2 ⊢ 𝐴 ∈ V | |
| 3 | elab.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | elabf 2907 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {cab 2182 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: ralab 2924 rexab 2926 intab 3904 dfiin2g 3950 dfiunv2 3953 uniuni 4487 dcextest 4618 peano5 4635 finds 4637 finds2 4638 funcnvuni 5328 fun11iun 5528 elabrex 5807 abrexco 5809 mapval2 6746 ssenen 6921 snexxph 7025 sbthlem2 7033 indpi 7428 nqprm 7628 nqprrnd 7629 nqprdisj 7630 nqprloc 7631 nqprl 7637 nqpru 7638 cauappcvgprlem2 7746 caucvgprlem2 7766 peano1nnnn 7938 peano2nnnn 7939 1nn 9020 peano2nn 9021 dfuzi 9455 hashfacen 10947 shftfvalg 11002 ovshftex 11003 shftfval 11005 4sqlemafi 12591 lss1d 14017 txdis1cn 14600 bj-ssom 15668 |
| Copyright terms: Public domain | W3C validator |