Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elab | GIF version |
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
elab.1 | ⊢ 𝐴 ∈ V |
elab.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elab | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1526 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | elab.1 | . 2 ⊢ 𝐴 ∈ V | |
3 | elab.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | elabf 2878 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2146 {cab 2161 Vcvv 2735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 |
This theorem is referenced by: ralab 2895 rexab 2897 intab 3869 dfiin2g 3915 dfiunv2 3918 uniuni 4445 dcextest 4574 peano5 4591 finds 4593 finds2 4594 funcnvuni 5277 fun11iun 5474 elabrex 5749 abrexco 5750 mapval2 6668 ssenen 6841 snexxph 6939 sbthlem2 6947 indpi 7316 nqprm 7516 nqprrnd 7517 nqprdisj 7518 nqprloc 7519 nqprl 7525 nqpru 7526 cauappcvgprlem2 7634 caucvgprlem2 7654 peano1nnnn 7826 peano2nnnn 7827 1nn 8903 peano2nn 8904 dfuzi 9336 hashfacen 10784 shftfvalg 10795 ovshftex 10796 shftfval 10798 txdis1cn 13358 bj-ssom 14257 |
Copyright terms: Public domain | W3C validator |