ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsbc3r GIF version

Theorem eqsbc3r 2921
Description: eqsbc3 2900 with setvar variable on right side of equals sign. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.)
Assertion
Ref Expression
eqsbc3r (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥𝐵 = 𝐴))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem eqsbc3r
StepHypRef Expression
1 eqsbc3 2900 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵))
2 eqcom 2102 . . 3 (𝐵 = 𝑥𝑥 = 𝐵)
32sbcbii 2920 . 2 ([𝐴 / 𝑥]𝐵 = 𝑥[𝐴 / 𝑥]𝑥 = 𝐵)
4 eqcom 2102 . 2 (𝐵 = 𝐴𝐴 = 𝐵)
51, 3, 43bitr4g 222 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥𝐵 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1299  wcel 1448  [wsbc 2862
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-sbc 2863
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator