Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcbii | GIF version |
Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
Ref | Expression |
---|---|
sbcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbcbii | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
3 | 2 | sbcbidv 3009 | . 2 ⊢ (⊤ → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
4 | 3 | mptru 1352 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ⊤wtru 1344 [wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-sbc 2952 |
This theorem is referenced by: eqsbc2 3011 sbc3an 3012 sbccomlem 3025 sbccom 3026 sbcabel 3032 csbco 3055 csbcow 3056 sbcnel12g 3062 sbcne12g 3063 sbccsbg 3074 sbccsb2g 3075 csbnestgf 3097 csbabg 3106 sbcssg 3518 sbcrel 4690 difopab 4737 sbcfung 5212 f1od2 6203 mpoxopovel 6209 bezoutlemnewy 11929 bezoutlemstep 11930 bezoutlemmain 11931 |
Copyright terms: Public domain | W3C validator |