ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbii GIF version

Theorem sbcbii 3060
Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.)
Hypothesis
Ref Expression
sbcbii.1 (𝜑𝜓)
Assertion
Ref Expression
sbcbii ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)

Proof of Theorem sbcbii
StepHypRef Expression
1 sbcbii.1 . . . 4 (𝜑𝜓)
21a1i 9 . . 3 (⊤ → (𝜑𝜓))
32sbcbidv 3059 . 2 (⊤ → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
43mptru 1382 1 ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)
Colors of variables: wff set class
Syntax hints:  wb 105  wtru 1374  [wsbc 3000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-sbc 3001
This theorem is referenced by:  eqsbc2  3061  sbc3an  3062  sbccomlem  3075  sbccom  3076  sbcabel  3082  csbco  3105  csbcow  3106  sbcnel12g  3112  sbcne12g  3113  sbccsbg  3124  sbccsb2g  3125  csbnestgf  3148  csbabg  3157  sbcssg  3571  sbcrel  4766  difopab  4816  sbcfung  5301  f1od2  6331  mpoxopovel  6337  bezoutlemnewy  12367  bezoutlemstep  12368  bezoutlemmain  12369
  Copyright terms: Public domain W3C validator