| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcbii | GIF version | ||
| Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
| Ref | Expression |
|---|---|
| sbcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbcbii | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | 2 | sbcbidv 3048 | . 2 ⊢ (⊤ → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
| 4 | 3 | mptru 1373 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊤wtru 1365 [wsbc 2989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-sbc 2990 |
| This theorem is referenced by: eqsbc2 3050 sbc3an 3051 sbccomlem 3064 sbccom 3065 sbcabel 3071 csbco 3094 csbcow 3095 sbcnel12g 3101 sbcne12g 3102 sbccsbg 3113 sbccsb2g 3114 csbnestgf 3137 csbabg 3146 sbcssg 3559 sbcrel 4749 difopab 4799 sbcfung 5282 f1od2 6293 mpoxopovel 6299 bezoutlemnewy 12163 bezoutlemstep 12164 bezoutlemmain 12165 |
| Copyright terms: Public domain | W3C validator |