ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exss GIF version

Theorem exss 4205
Description: Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003.)
Assertion
Ref Expression
exss (∃𝑥𝐴 𝜑 → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem exss
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabn0m 3436 . . 3 (∃𝑧 𝑧 ∈ {𝑥𝐴𝜑} ↔ ∃𝑥𝐴 𝜑)
2 df-rab 2453 . . . . 5 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
32eleq2i 2233 . . . 4 (𝑧 ∈ {𝑥𝐴𝜑} ↔ 𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
43exbii 1593 . . 3 (∃𝑧 𝑧 ∈ {𝑥𝐴𝜑} ↔ ∃𝑧 𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
51, 4bitr3i 185 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑧 𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
6 vex 2729 . . . . . 6 𝑧 ∈ V
76snss 3702 . . . . 5 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ {𝑧} ⊆ {𝑥 ∣ (𝑥𝐴𝜑)})
8 ssab2 3226 . . . . . 6 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
9 sstr2 3149 . . . . . 6 ({𝑧} ⊆ {𝑥 ∣ (𝑥𝐴𝜑)} → ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴 → {𝑧} ⊆ 𝐴))
108, 9mpi 15 . . . . 5 ({𝑧} ⊆ {𝑥 ∣ (𝑥𝐴𝜑)} → {𝑧} ⊆ 𝐴)
117, 10sylbi 120 . . . 4 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → {𝑧} ⊆ 𝐴)
12 simpr 109 . . . . . . . 8 (([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑) → [𝑧 / 𝑥]𝜑)
13 equsb1 1773 . . . . . . . . 9 [𝑧 / 𝑥]𝑥 = 𝑧
14 velsn 3593 . . . . . . . . . 10 (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧)
1514sbbii 1753 . . . . . . . . 9 ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ↔ [𝑧 / 𝑥]𝑥 = 𝑧)
1613, 15mpbir 145 . . . . . . . 8 [𝑧 / 𝑥]𝑥 ∈ {𝑧}
1712, 16jctil 310 . . . . . . 7 (([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑) → ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ∧ [𝑧 / 𝑥]𝜑))
18 df-clab 2152 . . . . . . . 8 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ [𝑧 / 𝑥](𝑥𝐴𝜑))
19 sban 1943 . . . . . . . 8 ([𝑧 / 𝑥](𝑥𝐴𝜑) ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑))
2018, 19bitri 183 . . . . . . 7 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑))
21 df-rab 2453 . . . . . . . . 9 {𝑥 ∈ {𝑧} ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ {𝑧} ∧ 𝜑)}
2221eleq2i 2233 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑} ↔ 𝑧 ∈ {𝑥 ∣ (𝑥 ∈ {𝑧} ∧ 𝜑)})
23 df-clab 2152 . . . . . . . . 9 (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ {𝑧} ∧ 𝜑)} ↔ [𝑧 / 𝑥](𝑥 ∈ {𝑧} ∧ 𝜑))
24 sban 1943 . . . . . . . . 9 ([𝑧 / 𝑥](𝑥 ∈ {𝑧} ∧ 𝜑) ↔ ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ∧ [𝑧 / 𝑥]𝜑))
2523, 24bitri 183 . . . . . . . 8 (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ {𝑧} ∧ 𝜑)} ↔ ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ∧ [𝑧 / 𝑥]𝜑))
2622, 25bitri 183 . . . . . . 7 (𝑧 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑} ↔ ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ∧ [𝑧 / 𝑥]𝜑))
2717, 20, 263imtr4i 200 . . . . . 6 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → 𝑧 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑})
28 elex2 2742 . . . . . 6 (𝑧 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑} → ∃𝑤 𝑤 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑})
2927, 28syl 14 . . . . 5 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → ∃𝑤 𝑤 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑})
30 rabn0m 3436 . . . . 5 (∃𝑤 𝑤 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑} ↔ ∃𝑥 ∈ {𝑧}𝜑)
3129, 30sylib 121 . . . 4 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → ∃𝑥 ∈ {𝑧}𝜑)
326snex 4164 . . . . 5 {𝑧} ∈ V
33 sseq1 3165 . . . . . 6 (𝑦 = {𝑧} → (𝑦𝐴 ↔ {𝑧} ⊆ 𝐴))
34 rexeq 2662 . . . . . 6 (𝑦 = {𝑧} → (∃𝑥𝑦 𝜑 ↔ ∃𝑥 ∈ {𝑧}𝜑))
3533, 34anbi12d 465 . . . . 5 (𝑦 = {𝑧} → ((𝑦𝐴 ∧ ∃𝑥𝑦 𝜑) ↔ ({𝑧} ⊆ 𝐴 ∧ ∃𝑥 ∈ {𝑧}𝜑)))
3632, 35spcev 2821 . . . 4 (({𝑧} ⊆ 𝐴 ∧ ∃𝑥 ∈ {𝑧}𝜑) → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
3711, 31, 36syl2anc 409 . . 3 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
3837exlimiv 1586 . 2 (∃𝑧 𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
395, 38sylbi 120 1 (∃𝑥𝐴 𝜑 → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wex 1480  [wsb 1750  wcel 2136  {cab 2151  wrex 2445  {crab 2448  wss 3116  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-rab 2453  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator