Step | Hyp | Ref
| Expression |
1 | | rabn0m 3436 |
. . 3
⊢
(∃𝑧 𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝜑) |
2 | | df-rab 2453 |
. . . . 5
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
3 | 2 | eleq2i 2233 |
. . . 4
⊢ (𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
4 | 3 | exbii 1593 |
. . 3
⊢
(∃𝑧 𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∃𝑧 𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
5 | 1, 4 | bitr3i 185 |
. 2
⊢
(∃𝑥 ∈
𝐴 𝜑 ↔ ∃𝑧 𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
6 | | vex 2729 |
. . . . . 6
⊢ 𝑧 ∈ V |
7 | 6 | snss 3702 |
. . . . 5
⊢ (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ {𝑧} ⊆ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
8 | | ssab2 3226 |
. . . . . 6
⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
9 | | sstr2 3149 |
. . . . . 6
⊢ ({𝑧} ⊆ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 → {𝑧} ⊆ 𝐴)) |
10 | 8, 9 | mpi 15 |
. . . . 5
⊢ ({𝑧} ⊆ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → {𝑧} ⊆ 𝐴) |
11 | 7, 10 | sylbi 120 |
. . . 4
⊢ (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → {𝑧} ⊆ 𝐴) |
12 | | simpr 109 |
. . . . . . . 8
⊢ (([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) → [𝑧 / 𝑥]𝜑) |
13 | | equsb1 1773 |
. . . . . . . . 9
⊢ [𝑧 / 𝑥]𝑥 = 𝑧 |
14 | | velsn 3593 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧) |
15 | 14 | sbbii 1753 |
. . . . . . . . 9
⊢ ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ↔ [𝑧 / 𝑥]𝑥 = 𝑧) |
16 | 13, 15 | mpbir 145 |
. . . . . . . 8
⊢ [𝑧 / 𝑥]𝑥 ∈ {𝑧} |
17 | 12, 16 | jctil 310 |
. . . . . . 7
⊢ (([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) → ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ∧ [𝑧 / 𝑥]𝜑)) |
18 | | df-clab 2152 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ [𝑧 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) |
19 | | sban 1943 |
. . . . . . . 8
⊢ ([𝑧 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) |
20 | 18, 19 | bitri 183 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) |
21 | | df-rab 2453 |
. . . . . . . . 9
⊢ {𝑥 ∈ {𝑧} ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ {𝑧} ∧ 𝜑)} |
22 | 21 | eleq2i 2233 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑} ↔ 𝑧 ∈ {𝑥 ∣ (𝑥 ∈ {𝑧} ∧ 𝜑)}) |
23 | | df-clab 2152 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ {𝑧} ∧ 𝜑)} ↔ [𝑧 / 𝑥](𝑥 ∈ {𝑧} ∧ 𝜑)) |
24 | | sban 1943 |
. . . . . . . . 9
⊢ ([𝑧 / 𝑥](𝑥 ∈ {𝑧} ∧ 𝜑) ↔ ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ∧ [𝑧 / 𝑥]𝜑)) |
25 | 23, 24 | bitri 183 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ {𝑧} ∧ 𝜑)} ↔ ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ∧ [𝑧 / 𝑥]𝜑)) |
26 | 22, 25 | bitri 183 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑} ↔ ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ∧ [𝑧 / 𝑥]𝜑)) |
27 | 17, 20, 26 | 3imtr4i 200 |
. . . . . 6
⊢ (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → 𝑧 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑}) |
28 | | elex2 2742 |
. . . . . 6
⊢ (𝑧 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑} → ∃𝑤 𝑤 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑}) |
29 | 27, 28 | syl 14 |
. . . . 5
⊢ (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → ∃𝑤 𝑤 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑}) |
30 | | rabn0m 3436 |
. . . . 5
⊢
(∃𝑤 𝑤 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑} ↔ ∃𝑥 ∈ {𝑧}𝜑) |
31 | 29, 30 | sylib 121 |
. . . 4
⊢ (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → ∃𝑥 ∈ {𝑧}𝜑) |
32 | 6 | snex 4164 |
. . . . 5
⊢ {𝑧} ∈ V |
33 | | sseq1 3165 |
. . . . . 6
⊢ (𝑦 = {𝑧} → (𝑦 ⊆ 𝐴 ↔ {𝑧} ⊆ 𝐴)) |
34 | | rexeq 2662 |
. . . . . 6
⊢ (𝑦 = {𝑧} → (∃𝑥 ∈ 𝑦 𝜑 ↔ ∃𝑥 ∈ {𝑧}𝜑)) |
35 | 33, 34 | anbi12d 465 |
. . . . 5
⊢ (𝑦 = {𝑧} → ((𝑦 ⊆ 𝐴 ∧ ∃𝑥 ∈ 𝑦 𝜑) ↔ ({𝑧} ⊆ 𝐴 ∧ ∃𝑥 ∈ {𝑧}𝜑))) |
36 | 32, 35 | spcev 2821 |
. . . 4
⊢ (({𝑧} ⊆ 𝐴 ∧ ∃𝑥 ∈ {𝑧}𝜑) → ∃𝑦(𝑦 ⊆ 𝐴 ∧ ∃𝑥 ∈ 𝑦 𝜑)) |
37 | 11, 31, 36 | syl2anc 409 |
. . 3
⊢ (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → ∃𝑦(𝑦 ⊆ 𝐴 ∧ ∃𝑥 ∈ 𝑦 𝜑)) |
38 | 37 | exlimiv 1586 |
. 2
⊢
(∃𝑧 𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → ∃𝑦(𝑦 ⊆ 𝐴 ∧ ∃𝑥 ∈ 𝑦 𝜑)) |
39 | 5, 38 | sylbi 120 |
1
⊢
(∃𝑥 ∈
𝐴 𝜑 → ∃𝑦(𝑦 ⊆ 𝐴 ∧ ∃𝑥 ∈ 𝑦 𝜑)) |