ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exss GIF version

Theorem exss 4260
Description: Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003.)
Assertion
Ref Expression
exss (∃𝑥𝐴 𝜑 → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem exss
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabn0m 3478 . . 3 (∃𝑧 𝑧 ∈ {𝑥𝐴𝜑} ↔ ∃𝑥𝐴 𝜑)
2 df-rab 2484 . . . . 5 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
32eleq2i 2263 . . . 4 (𝑧 ∈ {𝑥𝐴𝜑} ↔ 𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
43exbii 1619 . . 3 (∃𝑧 𝑧 ∈ {𝑥𝐴𝜑} ↔ ∃𝑧 𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
51, 4bitr3i 186 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑧 𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
6 vex 2766 . . . . . 6 𝑧 ∈ V
76snss 3757 . . . . 5 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ {𝑧} ⊆ {𝑥 ∣ (𝑥𝐴𝜑)})
8 ssab2 3267 . . . . . 6 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
9 sstr2 3190 . . . . . 6 ({𝑧} ⊆ {𝑥 ∣ (𝑥𝐴𝜑)} → ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴 → {𝑧} ⊆ 𝐴))
108, 9mpi 15 . . . . 5 ({𝑧} ⊆ {𝑥 ∣ (𝑥𝐴𝜑)} → {𝑧} ⊆ 𝐴)
117, 10sylbi 121 . . . 4 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → {𝑧} ⊆ 𝐴)
12 simpr 110 . . . . . . . 8 (([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑) → [𝑧 / 𝑥]𝜑)
13 equsb1 1799 . . . . . . . . 9 [𝑧 / 𝑥]𝑥 = 𝑧
14 velsn 3639 . . . . . . . . . 10 (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧)
1514sbbii 1779 . . . . . . . . 9 ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ↔ [𝑧 / 𝑥]𝑥 = 𝑧)
1613, 15mpbir 146 . . . . . . . 8 [𝑧 / 𝑥]𝑥 ∈ {𝑧}
1712, 16jctil 312 . . . . . . 7 (([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑) → ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ∧ [𝑧 / 𝑥]𝜑))
18 df-clab 2183 . . . . . . . 8 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ [𝑧 / 𝑥](𝑥𝐴𝜑))
19 sban 1974 . . . . . . . 8 ([𝑧 / 𝑥](𝑥𝐴𝜑) ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑))
2018, 19bitri 184 . . . . . . 7 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑))
21 df-rab 2484 . . . . . . . . 9 {𝑥 ∈ {𝑧} ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ {𝑧} ∧ 𝜑)}
2221eleq2i 2263 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑} ↔ 𝑧 ∈ {𝑥 ∣ (𝑥 ∈ {𝑧} ∧ 𝜑)})
23 df-clab 2183 . . . . . . . . 9 (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ {𝑧} ∧ 𝜑)} ↔ [𝑧 / 𝑥](𝑥 ∈ {𝑧} ∧ 𝜑))
24 sban 1974 . . . . . . . . 9 ([𝑧 / 𝑥](𝑥 ∈ {𝑧} ∧ 𝜑) ↔ ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ∧ [𝑧 / 𝑥]𝜑))
2523, 24bitri 184 . . . . . . . 8 (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ {𝑧} ∧ 𝜑)} ↔ ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ∧ [𝑧 / 𝑥]𝜑))
2622, 25bitri 184 . . . . . . 7 (𝑧 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑} ↔ ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ∧ [𝑧 / 𝑥]𝜑))
2717, 20, 263imtr4i 201 . . . . . 6 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → 𝑧 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑})
28 elex2 2779 . . . . . 6 (𝑧 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑} → ∃𝑤 𝑤 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑})
2927, 28syl 14 . . . . 5 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → ∃𝑤 𝑤 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑})
30 rabn0m 3478 . . . . 5 (∃𝑤 𝑤 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑} ↔ ∃𝑥 ∈ {𝑧}𝜑)
3129, 30sylib 122 . . . 4 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → ∃𝑥 ∈ {𝑧}𝜑)
326snex 4218 . . . . 5 {𝑧} ∈ V
33 sseq1 3206 . . . . . 6 (𝑦 = {𝑧} → (𝑦𝐴 ↔ {𝑧} ⊆ 𝐴))
34 rexeq 2694 . . . . . 6 (𝑦 = {𝑧} → (∃𝑥𝑦 𝜑 ↔ ∃𝑥 ∈ {𝑧}𝜑))
3533, 34anbi12d 473 . . . . 5 (𝑦 = {𝑧} → ((𝑦𝐴 ∧ ∃𝑥𝑦 𝜑) ↔ ({𝑧} ⊆ 𝐴 ∧ ∃𝑥 ∈ {𝑧}𝜑)))
3632, 35spcev 2859 . . . 4 (({𝑧} ⊆ 𝐴 ∧ ∃𝑥 ∈ {𝑧}𝜑) → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
3711, 31, 36syl2anc 411 . . 3 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
3837exlimiv 1612 . 2 (∃𝑧 𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
395, 38sylbi 121 1 (∃𝑥𝐴 𝜑 → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1506  [wsb 1776  wcel 2167  {cab 2182  wrex 2476  {crab 2479  wss 3157  {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-rab 2484  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator