ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reueq1f GIF version

Theorem reueq1f 2681
Description: Equality theorem for restricted unique existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
Hypotheses
Ref Expression
raleq1f.1 𝑥𝐴
raleq1f.2 𝑥𝐵
Assertion
Ref Expression
reueq1f (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))

Proof of Theorem reueq1f
StepHypRef Expression
1 raleq1f.1 . . . 4 𝑥𝐴
2 raleq1f.2 . . . 4 𝑥𝐵
31, 2nfeq 2337 . . 3 𝑥 𝐴 = 𝐵
4 eleq2 2251 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
54anbi1d 465 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
63, 5eubid 2043 . 2 (𝐴 = 𝐵 → (∃!𝑥(𝑥𝐴𝜑) ↔ ∃!𝑥(𝑥𝐵𝜑)))
7 df-reu 2472 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
8 df-reu 2472 . 2 (∃!𝑥𝐵 𝜑 ↔ ∃!𝑥(𝑥𝐵𝜑))
96, 7, 83bitr4g 223 1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1363  ∃!weu 2036  wcel 2158  wnfc 2316  ∃!wreu 2467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-cleq 2180  df-clel 2183  df-nfc 2318  df-reu 2472
This theorem is referenced by:  reueq1  2685
  Copyright terms: Public domain W3C validator