ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eu3h GIF version

Theorem eu3h 2059
Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) (New usage is discouraged.)
Hypothesis
Ref Expression
eu3h.1 (𝜑 → ∀𝑦𝜑)
Assertion
Ref Expression
eu3h (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem eu3h
StepHypRef Expression
1 euex 2044 . . 3 (∃!𝑥𝜑 → ∃𝑥𝜑)
2 eu3h.1 . . . 4 (𝜑 → ∀𝑦𝜑)
32eumo0 2045 . . 3 (∃!𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
41, 3jca 304 . 2 (∃!𝑥𝜑 → (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
52nfi 1450 . . . . 5 𝑦𝜑
65mo23 2055 . . . 4 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
76anim2i 340 . . 3 ((∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)) → (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
85eu2 2058 . . 3 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
97, 8sylibr 133 . 2 ((∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)) → ∃!𝑥𝜑)
104, 9impbii 125 1 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341  wex 1480  [wsb 1750  ∃!weu 2014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017
This theorem is referenced by:  eu3  2060  mo2r  2066  2eu4  2107
  Copyright terms: Public domain W3C validator