| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reuun2 | GIF version | ||
| Description: Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.) |
| Ref | Expression |
|---|---|
| reuun2 | ⊢ (¬ ∃𝑥 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2481 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 2 | euor2 2103 | . . 3 ⊢ (¬ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑) → (∃!𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 3 | 1, 2 | sylnbi 679 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐵 𝜑 → (∃!𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 4 | df-reu 2482 | . . 3 ⊢ (∃!𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃!𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑)) | |
| 5 | elun 3304 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 6 | 5 | anbi1i 458 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑)) |
| 7 | andir 820 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 8 | orcom 729 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 9 | 7, 8 | bitri 184 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 10 | 6, 9 | bitri 184 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 11 | 10 | eubii 2054 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ∃!𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 12 | 4, 11 | bitri 184 | . 2 ⊢ (∃!𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃!𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 13 | df-reu 2482 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 14 | 3, 12, 13 | 3bitr4g 223 | 1 ⊢ (¬ ∃𝑥 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∃wex 1506 ∃!weu 2045 ∈ wcel 2167 ∃wrex 2476 ∃!wreu 2477 ∪ cun 3155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-reu 2482 df-v 2765 df-un 3161 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |