ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuun2 GIF version

Theorem reuun2 3487
Description: Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.)
Assertion
Ref Expression
reuun2 (¬ ∃𝑥𝐵 𝜑 → (∃!𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃!𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reuun2
StepHypRef Expression
1 df-rex 2514 . . 3 (∃𝑥𝐵 𝜑 ↔ ∃𝑥(𝑥𝐵𝜑))
2 euor2 2136 . . 3 (¬ ∃𝑥(𝑥𝐵𝜑) → (∃!𝑥((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)) ↔ ∃!𝑥(𝑥𝐴𝜑)))
31, 2sylnbi 682 . 2 (¬ ∃𝑥𝐵 𝜑 → (∃!𝑥((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)) ↔ ∃!𝑥(𝑥𝐴𝜑)))
4 df-reu 2515 . . 3 (∃!𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃!𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑))
5 elun 3345 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 458 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
7 andir 824 . . . . . 6 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
8 orcom 733 . . . . . 6 (((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)) ↔ ((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)))
97, 8bitri 184 . . . . 5 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ ((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)))
106, 9bitri 184 . . . 4 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)))
1110eubii 2086 . . 3 (∃!𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ∃!𝑥((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)))
124, 11bitri 184 . 2 (∃!𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃!𝑥((𝑥𝐵𝜑) ∨ (𝑥𝐴𝜑)))
13 df-reu 2515 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
143, 12, 133bitr4g 223 1 (¬ ∃𝑥𝐵 𝜑 → (∃!𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃!𝑥𝐴 𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  wex 1538  ∃!weu 2077  wcel 2200  wrex 2509  ∃!wreu 2510  cun 3195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-reu 2515  df-v 2801  df-un 3201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator