![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reuun2 | GIF version |
Description: Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.) |
Ref | Expression |
---|---|
reuun2 | ⊢ (¬ ∃𝑥 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2461 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
2 | euor2 2084 | . . 3 ⊢ (¬ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑) → (∃!𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
3 | 1, 2 | sylnbi 678 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐵 𝜑 → (∃!𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
4 | df-reu 2462 | . . 3 ⊢ (∃!𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃!𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑)) | |
5 | elun 3278 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
6 | 5 | anbi1i 458 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑)) |
7 | andir 819 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
8 | orcom 728 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
9 | 7, 8 | bitri 184 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
10 | 6, 9 | bitri 184 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
11 | 10 | eubii 2035 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ∃!𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
12 | 4, 11 | bitri 184 | . 2 ⊢ (∃!𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃!𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
13 | df-reu 2462 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
14 | 3, 12, 13 | 3bitr4g 223 | 1 ⊢ (¬ ∃𝑥 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 ∃wex 1492 ∃!weu 2026 ∈ wcel 2148 ∃wrex 2456 ∃!wreu 2457 ∪ cun 3129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-reu 2462 df-v 2741 df-un 3135 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |