ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbmo GIF version

Theorem sbmo 2101
Description: Substitution into "at most one". (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
sbmo ([𝑦 / 𝑥]∃*𝑧𝜑 ↔ ∃*𝑧[𝑦 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbmo
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1539 . . . . . 6 𝑥 𝑧 = 𝑤
21sblim 1973 . . . . 5 ([𝑦 / 𝑥]((𝜑 ∧ [𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤) ↔ ([𝑦 / 𝑥](𝜑 ∧ [𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤))
3 sban 1971 . . . . . 6 ([𝑦 / 𝑥](𝜑 ∧ [𝑤 / 𝑧]𝜑) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑))
43imbi1i 238 . . . . 5 (([𝑦 / 𝑥](𝜑 ∧ [𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤))
5 sbcom2 2003 . . . . . . 7 ([𝑦 / 𝑥][𝑤 / 𝑧]𝜑 ↔ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑)
65anbi2i 457 . . . . . 6 (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑))
76imbi1i 238 . . . . 5 ((([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑) → 𝑧 = 𝑤))
82, 4, 73bitri 206 . . . 4 ([𝑦 / 𝑥]((𝜑 ∧ [𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑) → 𝑧 = 𝑤))
98sbalv 2021 . . 3 ([𝑦 / 𝑥]∀𝑤((𝜑 ∧ [𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤) ↔ ∀𝑤(([𝑦 / 𝑥]𝜑 ∧ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑) → 𝑧 = 𝑤))
109sbalv 2021 . 2 ([𝑦 / 𝑥]∀𝑧𝑤((𝜑 ∧ [𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤) ↔ ∀𝑧𝑤(([𝑦 / 𝑥]𝜑 ∧ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑) → 𝑧 = 𝑤))
11 nfv 1539 . . . 4 𝑤𝜑
1211mo3 2096 . . 3 (∃*𝑧𝜑 ↔ ∀𝑧𝑤((𝜑 ∧ [𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤))
1312sbbii 1776 . 2 ([𝑦 / 𝑥]∃*𝑧𝜑 ↔ [𝑦 / 𝑥]∀𝑧𝑤((𝜑 ∧ [𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤))
14 nfv 1539 . . 3 𝑤[𝑦 / 𝑥]𝜑
1514mo3 2096 . 2 (∃*𝑧[𝑦 / 𝑥]𝜑 ↔ ∀𝑧𝑤(([𝑦 / 𝑥]𝜑 ∧ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑) → 𝑧 = 𝑤))
1610, 13, 153bitr4i 212 1 ([𝑦 / 𝑥]∃*𝑧𝜑 ↔ ∃*𝑧[𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  [wsb 1773  ∃*wmo 2043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator