Step | Hyp | Ref
| Expression |
1 | | nfv 1521 |
. . . . . 6
⊢
Ⅎ𝑥 𝑧 = 𝑤 |
2 | 1 | sblim 1950 |
. . . . 5
⊢ ([𝑦 / 𝑥]((𝜑 ∧ [𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤) ↔ ([𝑦 / 𝑥](𝜑 ∧ [𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤)) |
3 | | sban 1948 |
. . . . . 6
⊢ ([𝑦 / 𝑥](𝜑 ∧ [𝑤 / 𝑧]𝜑) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)) |
4 | 3 | imbi1i 237 |
. . . . 5
⊢ (([𝑦 / 𝑥](𝜑 ∧ [𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤)) |
5 | | sbcom2 1980 |
. . . . . . 7
⊢ ([𝑦 / 𝑥][𝑤 / 𝑧]𝜑 ↔ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑) |
6 | 5 | anbi2i 454 |
. . . . . 6
⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑)) |
7 | 6 | imbi1i 237 |
. . . . 5
⊢ ((([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑) → 𝑧 = 𝑤)) |
8 | 2, 4, 7 | 3bitri 205 |
. . . 4
⊢ ([𝑦 / 𝑥]((𝜑 ∧ [𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑) → 𝑧 = 𝑤)) |
9 | 8 | sbalv 1998 |
. . 3
⊢ ([𝑦 / 𝑥]∀𝑤((𝜑 ∧ [𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤) ↔ ∀𝑤(([𝑦 / 𝑥]𝜑 ∧ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑) → 𝑧 = 𝑤)) |
10 | 9 | sbalv 1998 |
. 2
⊢ ([𝑦 / 𝑥]∀𝑧∀𝑤((𝜑 ∧ [𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤) ↔ ∀𝑧∀𝑤(([𝑦 / 𝑥]𝜑 ∧ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑) → 𝑧 = 𝑤)) |
11 | | nfv 1521 |
. . . 4
⊢
Ⅎ𝑤𝜑 |
12 | 11 | mo3 2073 |
. . 3
⊢
(∃*𝑧𝜑 ↔ ∀𝑧∀𝑤((𝜑 ∧ [𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤)) |
13 | 12 | sbbii 1758 |
. 2
⊢ ([𝑦 / 𝑥]∃*𝑧𝜑 ↔ [𝑦 / 𝑥]∀𝑧∀𝑤((𝜑 ∧ [𝑤 / 𝑧]𝜑) → 𝑧 = 𝑤)) |
14 | | nfv 1521 |
. . 3
⊢
Ⅎ𝑤[𝑦 / 𝑥]𝜑 |
15 | 14 | mo3 2073 |
. 2
⊢
(∃*𝑧[𝑦 / 𝑥]𝜑 ↔ ∀𝑧∀𝑤(([𝑦 / 𝑥]𝜑 ∧ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑) → 𝑧 = 𝑤)) |
16 | 10, 13, 15 | 3bitr4i 211 |
1
⊢ ([𝑦 / 𝑥]∃*𝑧𝜑 ↔ ∃*𝑧[𝑦 / 𝑥]𝜑) |