ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exists1 GIF version

Theorem exists1 2110
Description: Two ways to express "only one thing exists". The left-hand side requires only one variable to express this. Both sides are false in set theory. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
exists1 (∃!𝑥 𝑥 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦

Proof of Theorem exists1
StepHypRef Expression
1 df-eu 2017 . 2 (∃!𝑥 𝑥 = 𝑥 ↔ ∃𝑦𝑥(𝑥 = 𝑥𝑥 = 𝑦))
2 equid 1689 . . . . . 6 𝑥 = 𝑥
32tbt 246 . . . . 5 (𝑥 = 𝑦 ↔ (𝑥 = 𝑦𝑥 = 𝑥))
4 bicom 139 . . . . 5 ((𝑥 = 𝑦𝑥 = 𝑥) ↔ (𝑥 = 𝑥𝑥 = 𝑦))
53, 4bitri 183 . . . 4 (𝑥 = 𝑦 ↔ (𝑥 = 𝑥𝑥 = 𝑦))
65albii 1458 . . 3 (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥(𝑥 = 𝑥𝑥 = 𝑦))
76exbii 1593 . 2 (∃𝑦𝑥 𝑥 = 𝑦 ↔ ∃𝑦𝑥(𝑥 = 𝑥𝑥 = 𝑦))
8 hbae 1706 . . 3 (∀𝑥 𝑥 = 𝑦 → ∀𝑦𝑥 𝑥 = 𝑦)
9819.9h 1631 . 2 (∃𝑦𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑦)
101, 7, 93bitr2i 207 1 (∃!𝑥 𝑥 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1341  wex 1480  ∃!weu 2014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-eu 2017
This theorem is referenced by:  exists2  2111
  Copyright terms: Public domain W3C validator