Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exists1 | GIF version |
Description: Two ways to express "only one thing exists." The left-hand side requires only one variable to express this. Both sides are false in set theory. (Contributed by NM, 5-Apr-2004.) |
Ref | Expression |
---|---|
exists1 | ⊢ (∃!𝑥 𝑥 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2009 | . 2 ⊢ (∃!𝑥 𝑥 = 𝑥 ↔ ∃𝑦∀𝑥(𝑥 = 𝑥 ↔ 𝑥 = 𝑦)) | |
2 | equid 1681 | . . . . . 6 ⊢ 𝑥 = 𝑥 | |
3 | 2 | tbt 246 | . . . . 5 ⊢ (𝑥 = 𝑦 ↔ (𝑥 = 𝑦 ↔ 𝑥 = 𝑥)) |
4 | bicom 139 | . . . . 5 ⊢ ((𝑥 = 𝑦 ↔ 𝑥 = 𝑥) ↔ (𝑥 = 𝑥 ↔ 𝑥 = 𝑦)) | |
5 | 3, 4 | bitri 183 | . . . 4 ⊢ (𝑥 = 𝑦 ↔ (𝑥 = 𝑥 ↔ 𝑥 = 𝑦)) |
6 | 5 | albii 1450 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥(𝑥 = 𝑥 ↔ 𝑥 = 𝑦)) |
7 | 6 | exbii 1585 | . 2 ⊢ (∃𝑦∀𝑥 𝑥 = 𝑦 ↔ ∃𝑦∀𝑥(𝑥 = 𝑥 ↔ 𝑥 = 𝑦)) |
8 | hbae 1698 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦∀𝑥 𝑥 = 𝑦) | |
9 | 8 | 19.9h 1623 | . 2 ⊢ (∃𝑦∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑦) |
10 | 1, 7, 9 | 3bitr2i 207 | 1 ⊢ (∃!𝑥 𝑥 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1333 ∃wex 1472 ∃!weu 2006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 df-eu 2009 |
This theorem is referenced by: exists2 2103 |
Copyright terms: Public domain | W3C validator |