ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq2 GIF version

Theorem feq2 5391
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
feq2 (𝐴 = 𝐵 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))

Proof of Theorem feq2
StepHypRef Expression
1 fneq2 5347 . . 3 (𝐴 = 𝐵 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
21anbi1d 465 . 2 (𝐴 = 𝐵 → ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐶) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹𝐶)))
3 df-f 5262 . 2 (𝐹:𝐴𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶))
4 df-f 5262 . 2 (𝐹:𝐵𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹𝐶))
52, 3, 43bitr4g 223 1 (𝐴 = 𝐵 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wss 3157  ran crn 4664   Fn wfn 5253  wf 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-fn 5261  df-f 5262
This theorem is referenced by:  feq23  5393  feq2d  5395  feq2i  5401  f00  5449  f0dom0  5451  f1eq2  5459  fressnfv  5749  tfrcllemsucfn  6411  tfrcllemsucaccv  6412  tfrcllembxssdm  6414  tfrcllembfn  6415  tfrcllemaccex  6419  tfrcllemres  6420  tfrcldm  6421  tfrcl  6422  mapvalg  6717  map0g  6747  ac6sfi  6959  isomni  7202  ismkv  7219  iswomni  7231  isghm  13373
  Copyright terms: Public domain W3C validator