Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > feq2 | GIF version |
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
feq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2 5287 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
2 | 1 | anbi1d 462 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶))) |
3 | df-f 5202 | . 2 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
4 | df-f 5202 | . 2 ⊢ (𝐹:𝐵⟶𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶)) | |
5 | 2, 3, 4 | 3bitr4g 222 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ⊆ wss 3121 ran crn 4612 Fn wfn 5193 ⟶wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-fn 5201 df-f 5202 |
This theorem is referenced by: feq23 5333 feq2d 5335 feq2i 5341 f00 5389 f0dom0 5391 f1eq2 5399 fressnfv 5683 tfrcllemsucfn 6332 tfrcllemsucaccv 6333 tfrcllembxssdm 6335 tfrcllembfn 6336 tfrcllemaccex 6340 tfrcllemres 6341 tfrcldm 6342 tfrcl 6343 mapvalg 6636 map0g 6666 ac6sfi 6876 isomni 7112 ismkv 7129 iswomni 7141 |
Copyright terms: Public domain | W3C validator |