![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tposf | GIF version |
Description: The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposf | ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐵 × 𝐴)⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 4736 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
2 | tposf2 6269 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:◡(𝐴 × 𝐵)⟶𝐶)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:◡(𝐴 × 𝐵)⟶𝐶) |
4 | cnvxp 5048 | . . 3 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
5 | 4 | feq2i 5360 | . 2 ⊢ (tpos 𝐹:◡(𝐴 × 𝐵)⟶𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)⟶𝐶) |
6 | 3, 5 | sylib 122 | 1 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐵 × 𝐴)⟶𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 × cxp 4625 ◡ccnv 4626 Rel wrel 4632 ⟶wf 5213 tpos ctpos 6245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fo 5223 df-fv 5225 df-tpos 6246 |
This theorem is referenced by: tposfn 6274 |
Copyright terms: Public domain | W3C validator |