ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemsucfn GIF version

Theorem tfrcllemsucfn 6497
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6508. (Contributed by Jim Kingdon, 24-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllemsucfn.3 (𝜑𝑧𝑋)
tfrcllemsucfn.4 (𝜑𝑔:𝑧𝑆)
tfrcllemsucfn.5 (𝜑𝑔𝐴)
Assertion
Ref Expression
tfrcllemsucfn (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆)
Distinct variable groups:   𝑓,𝐺,𝑥   𝑆,𝑓,𝑥   𝑓,𝑋,𝑥   𝑓,𝑔   𝜑,𝑓,𝑥   𝑧,𝑓,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑔)   𝐴(𝑥,𝑦,𝑧,𝑓,𝑔)   𝑆(𝑦,𝑧,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐺(𝑦,𝑧,𝑔)   𝑋(𝑦,𝑧,𝑔)

Proof of Theorem tfrcllemsucfn
StepHypRef Expression
1 tfrcllemsucfn.4 . . 3 (𝜑𝑔:𝑧𝑆)
2 tfrcllemsucfn.3 . . . 4 (𝜑𝑧𝑋)
32elexd 2813 . . 3 (𝜑𝑧 ∈ V)
4 tfrcl.x . . . . 5 (𝜑 → Ord 𝑋)
5 ordelon 4473 . . . . 5 ((Ord 𝑋𝑧𝑋) → 𝑧 ∈ On)
64, 2, 5syl2anc 411 . . . 4 (𝜑𝑧 ∈ On)
7 eloni 4465 . . . 4 (𝑧 ∈ On → Ord 𝑧)
8 ordirr 4633 . . . 4 (Ord 𝑧 → ¬ 𝑧𝑧)
96, 7, 83syl 17 . . 3 (𝜑 → ¬ 𝑧𝑧)
10 feq2 5456 . . . . . . 7 (𝑥 = 𝑧 → (𝑓:𝑥𝑆𝑓:𝑧𝑆))
1110imbi1d 231 . . . . . 6 (𝑥 = 𝑧 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
1211albidv 1870 . . . . 5 (𝑥 = 𝑧 → (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
13 tfrcl.ex . . . . . . . 8 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
14133expia 1229 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
1514alrimiv 1920 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
1615ralrimiva 2603 . . . . 5 (𝜑 → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
1712, 16, 2rspcdva 2912 . . . 4 (𝜑 → ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆))
18 feq1 5455 . . . . . 6 (𝑓 = 𝑔 → (𝑓:𝑧𝑆𝑔:𝑧𝑆))
19 fveq2 5626 . . . . . . 7 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
2019eleq1d 2298 . . . . . 6 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺𝑔) ∈ 𝑆))
2118, 20imbi12d 234 . . . . 5 (𝑓 = 𝑔 → ((𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆)))
2221spv 1906 . . . 4 (∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
2317, 1, 22sylc 62 . . 3 (𝜑 → (𝐺𝑔) ∈ 𝑆)
24 fsnunf 5838 . . 3 ((𝑔:𝑧𝑆 ∧ (𝑧 ∈ V ∧ ¬ 𝑧𝑧) ∧ (𝐺𝑔) ∈ 𝑆) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):(𝑧 ∪ {𝑧})⟶𝑆)
251, 3, 9, 23, 24syl121anc 1276 . 2 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):(𝑧 ∪ {𝑧})⟶𝑆)
26 df-suc 4461 . . 3 suc 𝑧 = (𝑧 ∪ {𝑧})
2726feq2i 5466 . 2 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):(𝑧 ∪ {𝑧})⟶𝑆)
2825, 27sylibr 134 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 1002  wal 1393   = wceq 1395  wcel 2200  {cab 2215  wral 2508  wrex 2509  Vcvv 2799  cun 3195  {csn 3666  cop 3669  Ord word 4452  Oncon0 4453  suc csuc 4455  cres 4720  Fun wfun 5311  wf 5313  cfv 5317  recscrecs 6448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325
This theorem is referenced by:  tfrcllemsucaccv  6498  tfrcllembfn  6501
  Copyright terms: Public domain W3C validator