ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemsucfn GIF version

Theorem tfrcllemsucfn 6356
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6367. (Contributed by Jim Kingdon, 24-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllemsucfn.3 (𝜑𝑧𝑋)
tfrcllemsucfn.4 (𝜑𝑔:𝑧𝑆)
tfrcllemsucfn.5 (𝜑𝑔𝐴)
Assertion
Ref Expression
tfrcllemsucfn (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆)
Distinct variable groups:   𝑓,𝐺,𝑥   𝑆,𝑓,𝑥   𝑓,𝑋,𝑥   𝑓,𝑔   𝜑,𝑓,𝑥   𝑧,𝑓,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑔)   𝐴(𝑥,𝑦,𝑧,𝑓,𝑔)   𝑆(𝑦,𝑧,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐺(𝑦,𝑧,𝑔)   𝑋(𝑦,𝑧,𝑔)

Proof of Theorem tfrcllemsucfn
StepHypRef Expression
1 tfrcllemsucfn.4 . . 3 (𝜑𝑔:𝑧𝑆)
2 tfrcllemsucfn.3 . . . 4 (𝜑𝑧𝑋)
32elexd 2752 . . 3 (𝜑𝑧 ∈ V)
4 tfrcl.x . . . . 5 (𝜑 → Ord 𝑋)
5 ordelon 4385 . . . . 5 ((Ord 𝑋𝑧𝑋) → 𝑧 ∈ On)
64, 2, 5syl2anc 411 . . . 4 (𝜑𝑧 ∈ On)
7 eloni 4377 . . . 4 (𝑧 ∈ On → Ord 𝑧)
8 ordirr 4543 . . . 4 (Ord 𝑧 → ¬ 𝑧𝑧)
96, 7, 83syl 17 . . 3 (𝜑 → ¬ 𝑧𝑧)
10 feq2 5351 . . . . . . 7 (𝑥 = 𝑧 → (𝑓:𝑥𝑆𝑓:𝑧𝑆))
1110imbi1d 231 . . . . . 6 (𝑥 = 𝑧 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
1211albidv 1824 . . . . 5 (𝑥 = 𝑧 → (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
13 tfrcl.ex . . . . . . . 8 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
14133expia 1205 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
1514alrimiv 1874 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
1615ralrimiva 2550 . . . . 5 (𝜑 → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
1712, 16, 2rspcdva 2848 . . . 4 (𝜑 → ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆))
18 feq1 5350 . . . . . 6 (𝑓 = 𝑔 → (𝑓:𝑧𝑆𝑔:𝑧𝑆))
19 fveq2 5517 . . . . . . 7 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
2019eleq1d 2246 . . . . . 6 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺𝑔) ∈ 𝑆))
2118, 20imbi12d 234 . . . . 5 (𝑓 = 𝑔 → ((𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆)))
2221spv 1860 . . . 4 (∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
2317, 1, 22sylc 62 . . 3 (𝜑 → (𝐺𝑔) ∈ 𝑆)
24 fsnunf 5718 . . 3 ((𝑔:𝑧𝑆 ∧ (𝑧 ∈ V ∧ ¬ 𝑧𝑧) ∧ (𝐺𝑔) ∈ 𝑆) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):(𝑧 ∪ {𝑧})⟶𝑆)
251, 3, 9, 23, 24syl121anc 1243 . 2 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):(𝑧 ∪ {𝑧})⟶𝑆)
26 df-suc 4373 . . 3 suc 𝑧 = (𝑧 ∪ {𝑧})
2726feq2i 5361 . 2 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):(𝑧 ∪ {𝑧})⟶𝑆)
2825, 27sylibr 134 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 978  wal 1351   = wceq 1353  wcel 2148  {cab 2163  wral 2455  wrex 2456  Vcvv 2739  cun 3129  {csn 3594  cop 3597  Ord word 4364  Oncon0 4365  suc csuc 4367  cres 4630  Fun wfun 5212  wf 5214  cfv 5218  recscrecs 6307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226
This theorem is referenced by:  tfrcllemsucaccv  6357  tfrcllembfn  6360
  Copyright terms: Public domain W3C validator