ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemsucfn GIF version

Theorem tfrcllemsucfn 6321
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6332. (Contributed by Jim Kingdon, 24-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllemsucfn.3 (𝜑𝑧𝑋)
tfrcllemsucfn.4 (𝜑𝑔:𝑧𝑆)
tfrcllemsucfn.5 (𝜑𝑔𝐴)
Assertion
Ref Expression
tfrcllemsucfn (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆)
Distinct variable groups:   𝑓,𝐺,𝑥   𝑆,𝑓,𝑥   𝑓,𝑋,𝑥   𝑓,𝑔   𝜑,𝑓,𝑥   𝑧,𝑓,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑔)   𝐴(𝑥,𝑦,𝑧,𝑓,𝑔)   𝑆(𝑦,𝑧,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐺(𝑦,𝑧,𝑔)   𝑋(𝑦,𝑧,𝑔)

Proof of Theorem tfrcllemsucfn
StepHypRef Expression
1 tfrcllemsucfn.4 . . 3 (𝜑𝑔:𝑧𝑆)
2 tfrcllemsucfn.3 . . . 4 (𝜑𝑧𝑋)
32elexd 2739 . . 3 (𝜑𝑧 ∈ V)
4 tfrcl.x . . . . 5 (𝜑 → Ord 𝑋)
5 ordelon 4361 . . . . 5 ((Ord 𝑋𝑧𝑋) → 𝑧 ∈ On)
64, 2, 5syl2anc 409 . . . 4 (𝜑𝑧 ∈ On)
7 eloni 4353 . . . 4 (𝑧 ∈ On → Ord 𝑧)
8 ordirr 4519 . . . 4 (Ord 𝑧 → ¬ 𝑧𝑧)
96, 7, 83syl 17 . . 3 (𝜑 → ¬ 𝑧𝑧)
10 feq2 5321 . . . . . . 7 (𝑥 = 𝑧 → (𝑓:𝑥𝑆𝑓:𝑧𝑆))
1110imbi1d 230 . . . . . 6 (𝑥 = 𝑧 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
1211albidv 1812 . . . . 5 (𝑥 = 𝑧 → (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
13 tfrcl.ex . . . . . . . 8 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
14133expia 1195 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
1514alrimiv 1862 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
1615ralrimiva 2539 . . . . 5 (𝜑 → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
1712, 16, 2rspcdva 2835 . . . 4 (𝜑 → ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆))
18 feq1 5320 . . . . . 6 (𝑓 = 𝑔 → (𝑓:𝑧𝑆𝑔:𝑧𝑆))
19 fveq2 5486 . . . . . . 7 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
2019eleq1d 2235 . . . . . 6 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺𝑔) ∈ 𝑆))
2118, 20imbi12d 233 . . . . 5 (𝑓 = 𝑔 → ((𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆)))
2221spv 1848 . . . 4 (∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
2317, 1, 22sylc 62 . . 3 (𝜑 → (𝐺𝑔) ∈ 𝑆)
24 fsnunf 5685 . . 3 ((𝑔:𝑧𝑆 ∧ (𝑧 ∈ V ∧ ¬ 𝑧𝑧) ∧ (𝐺𝑔) ∈ 𝑆) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):(𝑧 ∪ {𝑧})⟶𝑆)
251, 3, 9, 23, 24syl121anc 1233 . 2 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):(𝑧 ∪ {𝑧})⟶𝑆)
26 df-suc 4349 . . 3 suc 𝑧 = (𝑧 ∪ {𝑧})
2726feq2i 5331 . 2 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):(𝑧 ∪ {𝑧})⟶𝑆)
2825, 27sylibr 133 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3a 968  wal 1341   = wceq 1343  wcel 2136  {cab 2151  wral 2444  wrex 2445  Vcvv 2726  cun 3114  {csn 3576  cop 3579  Ord word 4340  Oncon0 4341  suc csuc 4343  cres 4606  Fun wfun 5182  wf 5184  cfv 5188  recscrecs 6272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196
This theorem is referenced by:  tfrcllemsucaccv  6322  tfrcllembfn  6325
  Copyright terms: Public domain W3C validator