ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemsucfn GIF version

Theorem tfrcllemsucfn 6100
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6111. (Contributed by Jim Kingdon, 24-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllemsucfn.3 (𝜑𝑧𝑋)
tfrcllemsucfn.4 (𝜑𝑔:𝑧𝑆)
tfrcllemsucfn.5 (𝜑𝑔𝐴)
Assertion
Ref Expression
tfrcllemsucfn (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆)
Distinct variable groups:   𝑓,𝐺,𝑥   𝑆,𝑓,𝑥   𝑓,𝑋,𝑥   𝑓,𝑔   𝜑,𝑓,𝑥   𝑧,𝑓,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑔)   𝐴(𝑥,𝑦,𝑧,𝑓,𝑔)   𝑆(𝑦,𝑧,𝑔)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐺(𝑦,𝑧,𝑔)   𝑋(𝑦,𝑧,𝑔)

Proof of Theorem tfrcllemsucfn
StepHypRef Expression
1 tfrcllemsucfn.4 . . 3 (𝜑𝑔:𝑧𝑆)
2 tfrcllemsucfn.3 . . . 4 (𝜑𝑧𝑋)
32elexd 2632 . . 3 (𝜑𝑧 ∈ V)
4 tfrcl.x . . . . 5 (𝜑 → Ord 𝑋)
5 ordelon 4201 . . . . 5 ((Ord 𝑋𝑧𝑋) → 𝑧 ∈ On)
64, 2, 5syl2anc 403 . . . 4 (𝜑𝑧 ∈ On)
7 eloni 4193 . . . 4 (𝑧 ∈ On → Ord 𝑧)
8 ordirr 4348 . . . 4 (Ord 𝑧 → ¬ 𝑧𝑧)
96, 7, 83syl 17 . . 3 (𝜑 → ¬ 𝑧𝑧)
10 feq2 5132 . . . . . . 7 (𝑥 = 𝑧 → (𝑓:𝑥𝑆𝑓:𝑧𝑆))
1110imbi1d 229 . . . . . 6 (𝑥 = 𝑧 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
1211albidv 1752 . . . . 5 (𝑥 = 𝑧 → (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆)))
13 tfrcl.ex . . . . . . . 8 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
14133expia 1145 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
1514alrimiv 1802 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
1615ralrimiva 2446 . . . . 5 (𝜑 → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
1712, 16, 2rspcdva 2727 . . . 4 (𝜑 → ∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆))
18 feq1 5131 . . . . . 6 (𝑓 = 𝑔 → (𝑓:𝑧𝑆𝑔:𝑧𝑆))
19 fveq2 5289 . . . . . . 7 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
2019eleq1d 2156 . . . . . 6 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺𝑔) ∈ 𝑆))
2118, 20imbi12d 232 . . . . 5 (𝑓 = 𝑔 → ((𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆)))
2221spv 1788 . . . 4 (∀𝑓(𝑓:𝑧𝑆 → (𝐺𝑓) ∈ 𝑆) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
2317, 1, 22sylc 61 . . 3 (𝜑 → (𝐺𝑔) ∈ 𝑆)
24 fsnunf 5480 . . 3 ((𝑔:𝑧𝑆 ∧ (𝑧 ∈ V ∧ ¬ 𝑧𝑧) ∧ (𝐺𝑔) ∈ 𝑆) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):(𝑧 ∪ {𝑧})⟶𝑆)
251, 3, 9, 23, 24syl121anc 1179 . 2 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):(𝑧 ∪ {𝑧})⟶𝑆)
26 df-suc 4189 . . 3 suc 𝑧 = (𝑧 ∪ {𝑧})
2726feq2i 5141 . 2 ((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆 ↔ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):(𝑧 ∪ {𝑧})⟶𝑆)
2825, 27sylibr 132 1 (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}):suc 𝑧𝑆)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  w3a 924  wal 1287   = wceq 1289  wcel 1438  {cab 2074  wral 2359  wrex 2360  Vcvv 2619  cun 2995  {csn 3441  cop 3444  Ord word 4180  Oncon0 4181  suc csuc 4183  cres 4430  Fun wfun 4996  wf 4998  cfv 5002  recscrecs 6051
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-setind 4343
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-tr 3929  df-id 4111  df-iord 4184  df-on 4186  df-suc 4189  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010
This theorem is referenced by:  tfrcllemsucaccv  6101  tfrcllembfn  6104
  Copyright terms: Public domain W3C validator