| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrcllemsucfn | GIF version | ||
| Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6462. (Contributed by Jim Kingdon, 24-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfrcl.f | ⊢ 𝐹 = recs(𝐺) |
| tfrcl.g | ⊢ (𝜑 → Fun 𝐺) |
| tfrcl.x | ⊢ (𝜑 → Ord 𝑋) |
| tfrcl.ex | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
| tfrcllemsucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
| tfrcllemsucfn.3 | ⊢ (𝜑 → 𝑧 ∈ 𝑋) |
| tfrcllemsucfn.4 | ⊢ (𝜑 → 𝑔:𝑧⟶𝑆) |
| tfrcllemsucfn.5 | ⊢ (𝜑 → 𝑔 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| tfrcllemsucfn | ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrcllemsucfn.4 | . . 3 ⊢ (𝜑 → 𝑔:𝑧⟶𝑆) | |
| 2 | tfrcllemsucfn.3 | . . . 4 ⊢ (𝜑 → 𝑧 ∈ 𝑋) | |
| 3 | 2 | elexd 2787 | . . 3 ⊢ (𝜑 → 𝑧 ∈ V) |
| 4 | tfrcl.x | . . . . 5 ⊢ (𝜑 → Ord 𝑋) | |
| 5 | ordelon 4437 | . . . . 5 ⊢ ((Ord 𝑋 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ On) | |
| 6 | 4, 2, 5 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 𝑧 ∈ On) |
| 7 | eloni 4429 | . . . 4 ⊢ (𝑧 ∈ On → Ord 𝑧) | |
| 8 | ordirr 4597 | . . . 4 ⊢ (Ord 𝑧 → ¬ 𝑧 ∈ 𝑧) | |
| 9 | 6, 7, 8 | 3syl 17 | . . 3 ⊢ (𝜑 → ¬ 𝑧 ∈ 𝑧) |
| 10 | feq2 5418 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑓:𝑥⟶𝑆 ↔ 𝑓:𝑧⟶𝑆)) | |
| 11 | 10 | imbi1d 231 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ (𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆))) |
| 12 | 11 | albidv 1848 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆))) |
| 13 | tfrcl.ex | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) | |
| 14 | 13 | 3expia 1208 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
| 15 | 14 | alrimiv 1898 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
| 16 | 15 | ralrimiva 2580 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
| 17 | 12, 16, 2 | rspcdva 2886 | . . . 4 ⊢ (𝜑 → ∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
| 18 | feq1 5417 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑓:𝑧⟶𝑆 ↔ 𝑔:𝑧⟶𝑆)) | |
| 19 | fveq2 5588 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → (𝐺‘𝑓) = (𝐺‘𝑔)) | |
| 20 | 19 | eleq1d 2275 | . . . . . 6 ⊢ (𝑓 = 𝑔 → ((𝐺‘𝑓) ∈ 𝑆 ↔ (𝐺‘𝑔) ∈ 𝑆)) |
| 21 | 18, 20 | imbi12d 234 | . . . . 5 ⊢ (𝑓 = 𝑔 → ((𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆))) |
| 22 | 21 | spv 1884 | . . . 4 ⊢ (∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) → (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆)) |
| 23 | 17, 1, 22 | sylc 62 | . . 3 ⊢ (𝜑 → (𝐺‘𝑔) ∈ 𝑆) |
| 24 | fsnunf 5796 | . . 3 ⊢ ((𝑔:𝑧⟶𝑆 ∧ (𝑧 ∈ V ∧ ¬ 𝑧 ∈ 𝑧) ∧ (𝐺‘𝑔) ∈ 𝑆) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):(𝑧 ∪ {𝑧})⟶𝑆) | |
| 25 | 1, 3, 9, 23, 24 | syl121anc 1255 | . 2 ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):(𝑧 ∪ {𝑧})⟶𝑆) |
| 26 | df-suc 4425 | . . 3 ⊢ suc 𝑧 = (𝑧 ∪ {𝑧}) | |
| 27 | 26 | feq2i 5428 | . 2 ⊢ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶𝑆 ↔ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):(𝑧 ∪ {𝑧})⟶𝑆) |
| 28 | 25, 27 | sylibr 134 | 1 ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶𝑆) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 981 ∀wal 1371 = wceq 1373 ∈ wcel 2177 {cab 2192 ∀wral 2485 ∃wrex 2486 Vcvv 2773 ∪ cun 3168 {csn 3637 〈cop 3640 Ord word 4416 Oncon0 4417 suc csuc 4419 ↾ cres 4684 Fun wfun 5273 ⟶wf 5275 ‘cfv 5279 recscrecs 6402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-setind 4592 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-tr 4150 df-id 4347 df-iord 4420 df-on 4422 df-suc 4425 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 |
| This theorem is referenced by: tfrcllemsucaccv 6452 tfrcllembfn 6455 |
| Copyright terms: Public domain | W3C validator |