![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfrcllemsucfn | GIF version |
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6367. (Contributed by Jim Kingdon, 24-Mar-2022.) |
Ref | Expression |
---|---|
tfrcl.f | ⊢ 𝐹 = recs(𝐺) |
tfrcl.g | ⊢ (𝜑 → Fun 𝐺) |
tfrcl.x | ⊢ (𝜑 → Ord 𝑋) |
tfrcl.ex | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
tfrcllemsucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
tfrcllemsucfn.3 | ⊢ (𝜑 → 𝑧 ∈ 𝑋) |
tfrcllemsucfn.4 | ⊢ (𝜑 → 𝑔:𝑧⟶𝑆) |
tfrcllemsucfn.5 | ⊢ (𝜑 → 𝑔 ∈ 𝐴) |
Ref | Expression |
---|---|
tfrcllemsucfn | ⊢ (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺‘𝑔)⟩}):suc 𝑧⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrcllemsucfn.4 | . . 3 ⊢ (𝜑 → 𝑔:𝑧⟶𝑆) | |
2 | tfrcllemsucfn.3 | . . . 4 ⊢ (𝜑 → 𝑧 ∈ 𝑋) | |
3 | 2 | elexd 2752 | . . 3 ⊢ (𝜑 → 𝑧 ∈ V) |
4 | tfrcl.x | . . . . 5 ⊢ (𝜑 → Ord 𝑋) | |
5 | ordelon 4385 | . . . . 5 ⊢ ((Ord 𝑋 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ On) | |
6 | 4, 2, 5 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 𝑧 ∈ On) |
7 | eloni 4377 | . . . 4 ⊢ (𝑧 ∈ On → Ord 𝑧) | |
8 | ordirr 4543 | . . . 4 ⊢ (Ord 𝑧 → ¬ 𝑧 ∈ 𝑧) | |
9 | 6, 7, 8 | 3syl 17 | . . 3 ⊢ (𝜑 → ¬ 𝑧 ∈ 𝑧) |
10 | feq2 5351 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑓:𝑥⟶𝑆 ↔ 𝑓:𝑧⟶𝑆)) | |
11 | 10 | imbi1d 231 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ (𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆))) |
12 | 11 | albidv 1824 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆))) |
13 | tfrcl.ex | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) | |
14 | 13 | 3expia 1205 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
15 | 14 | alrimiv 1874 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
16 | 15 | ralrimiva 2550 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
17 | 12, 16, 2 | rspcdva 2848 | . . . 4 ⊢ (𝜑 → ∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
18 | feq1 5350 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑓:𝑧⟶𝑆 ↔ 𝑔:𝑧⟶𝑆)) | |
19 | fveq2 5517 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → (𝐺‘𝑓) = (𝐺‘𝑔)) | |
20 | 19 | eleq1d 2246 | . . . . . 6 ⊢ (𝑓 = 𝑔 → ((𝐺‘𝑓) ∈ 𝑆 ↔ (𝐺‘𝑔) ∈ 𝑆)) |
21 | 18, 20 | imbi12d 234 | . . . . 5 ⊢ (𝑓 = 𝑔 → ((𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆))) |
22 | 21 | spv 1860 | . . . 4 ⊢ (∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) → (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆)) |
23 | 17, 1, 22 | sylc 62 | . . 3 ⊢ (𝜑 → (𝐺‘𝑔) ∈ 𝑆) |
24 | fsnunf 5718 | . . 3 ⊢ ((𝑔:𝑧⟶𝑆 ∧ (𝑧 ∈ V ∧ ¬ 𝑧 ∈ 𝑧) ∧ (𝐺‘𝑔) ∈ 𝑆) → (𝑔 ∪ {⟨𝑧, (𝐺‘𝑔)⟩}):(𝑧 ∪ {𝑧})⟶𝑆) | |
25 | 1, 3, 9, 23, 24 | syl121anc 1243 | . 2 ⊢ (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺‘𝑔)⟩}):(𝑧 ∪ {𝑧})⟶𝑆) |
26 | df-suc 4373 | . . 3 ⊢ suc 𝑧 = (𝑧 ∪ {𝑧}) | |
27 | 26 | feq2i 5361 | . 2 ⊢ ((𝑔 ∪ {⟨𝑧, (𝐺‘𝑔)⟩}):suc 𝑧⟶𝑆 ↔ (𝑔 ∪ {⟨𝑧, (𝐺‘𝑔)⟩}):(𝑧 ∪ {𝑧})⟶𝑆) |
28 | 25, 27 | sylibr 134 | 1 ⊢ (𝜑 → (𝑔 ∪ {⟨𝑧, (𝐺‘𝑔)⟩}):suc 𝑧⟶𝑆) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 978 ∀wal 1351 = wceq 1353 ∈ wcel 2148 {cab 2163 ∀wral 2455 ∃wrex 2456 Vcvv 2739 ∪ cun 3129 {csn 3594 ⟨cop 3597 Ord word 4364 Oncon0 4365 suc csuc 4367 ↾ cres 4630 Fun wfun 5212 ⟶wf 5214 ‘cfv 5218 recscrecs 6307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 |
This theorem is referenced by: tfrcllemsucaccv 6357 tfrcllembfn 6360 |
Copyright terms: Public domain | W3C validator |