![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfrcllemsucfn | GIF version |
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6379. (Contributed by Jim Kingdon, 24-Mar-2022.) |
Ref | Expression |
---|---|
tfrcl.f | ⊢ 𝐹 = recs(𝐺) |
tfrcl.g | ⊢ (𝜑 → Fun 𝐺) |
tfrcl.x | ⊢ (𝜑 → Ord 𝑋) |
tfrcl.ex | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
tfrcllemsucfn.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
tfrcllemsucfn.3 | ⊢ (𝜑 → 𝑧 ∈ 𝑋) |
tfrcllemsucfn.4 | ⊢ (𝜑 → 𝑔:𝑧⟶𝑆) |
tfrcllemsucfn.5 | ⊢ (𝜑 → 𝑔 ∈ 𝐴) |
Ref | Expression |
---|---|
tfrcllemsucfn | ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrcllemsucfn.4 | . . 3 ⊢ (𝜑 → 𝑔:𝑧⟶𝑆) | |
2 | tfrcllemsucfn.3 | . . . 4 ⊢ (𝜑 → 𝑧 ∈ 𝑋) | |
3 | 2 | elexd 2762 | . . 3 ⊢ (𝜑 → 𝑧 ∈ V) |
4 | tfrcl.x | . . . . 5 ⊢ (𝜑 → Ord 𝑋) | |
5 | ordelon 4395 | . . . . 5 ⊢ ((Ord 𝑋 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ On) | |
6 | 4, 2, 5 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 𝑧 ∈ On) |
7 | eloni 4387 | . . . 4 ⊢ (𝑧 ∈ On → Ord 𝑧) | |
8 | ordirr 4553 | . . . 4 ⊢ (Ord 𝑧 → ¬ 𝑧 ∈ 𝑧) | |
9 | 6, 7, 8 | 3syl 17 | . . 3 ⊢ (𝜑 → ¬ 𝑧 ∈ 𝑧) |
10 | feq2 5361 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑓:𝑥⟶𝑆 ↔ 𝑓:𝑧⟶𝑆)) | |
11 | 10 | imbi1d 231 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ (𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆))) |
12 | 11 | albidv 1834 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆))) |
13 | tfrcl.ex | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) | |
14 | 13 | 3expia 1206 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
15 | 14 | alrimiv 1884 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
16 | 15 | ralrimiva 2560 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
17 | 12, 16, 2 | rspcdva 2858 | . . . 4 ⊢ (𝜑 → ∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
18 | feq1 5360 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝑓:𝑧⟶𝑆 ↔ 𝑔:𝑧⟶𝑆)) | |
19 | fveq2 5527 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → (𝐺‘𝑓) = (𝐺‘𝑔)) | |
20 | 19 | eleq1d 2256 | . . . . . 6 ⊢ (𝑓 = 𝑔 → ((𝐺‘𝑓) ∈ 𝑆 ↔ (𝐺‘𝑔) ∈ 𝑆)) |
21 | 18, 20 | imbi12d 234 | . . . . 5 ⊢ (𝑓 = 𝑔 → ((𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆))) |
22 | 21 | spv 1870 | . . . 4 ⊢ (∀𝑓(𝑓:𝑧⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) → (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆)) |
23 | 17, 1, 22 | sylc 62 | . . 3 ⊢ (𝜑 → (𝐺‘𝑔) ∈ 𝑆) |
24 | fsnunf 5729 | . . 3 ⊢ ((𝑔:𝑧⟶𝑆 ∧ (𝑧 ∈ V ∧ ¬ 𝑧 ∈ 𝑧) ∧ (𝐺‘𝑔) ∈ 𝑆) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):(𝑧 ∪ {𝑧})⟶𝑆) | |
25 | 1, 3, 9, 23, 24 | syl121anc 1253 | . 2 ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):(𝑧 ∪ {𝑧})⟶𝑆) |
26 | df-suc 4383 | . . 3 ⊢ suc 𝑧 = (𝑧 ∪ {𝑧}) | |
27 | 26 | feq2i 5371 | . 2 ⊢ ((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶𝑆 ↔ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):(𝑧 ∪ {𝑧})⟶𝑆) |
28 | 25, 27 | sylibr 134 | 1 ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶𝑆) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 979 ∀wal 1361 = wceq 1363 ∈ wcel 2158 {cab 2173 ∀wral 2465 ∃wrex 2466 Vcvv 2749 ∪ cun 3139 {csn 3604 〈cop 3607 Ord word 4374 Oncon0 4375 suc csuc 4377 ↾ cres 4640 Fun wfun 5222 ⟶wf 5224 ‘cfv 5228 recscrecs 6319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-setind 4548 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-v 2751 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-tr 4114 df-id 4305 df-iord 4378 df-on 4380 df-suc 4383 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 |
This theorem is referenced by: tfrcllemsucaccv 6369 tfrcllembfn 6372 |
Copyright terms: Public domain | W3C validator |