ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0met GIF version

Theorem 0met 13969
Description: The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
0met ∅ ∈ (Met‘∅)

Proof of Theorem 0met
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4132 . 2 ∅ ∈ V
2 f0 5408 . . 3 ∅:∅⟶ℝ
3 xp0 5050 . . . 4 (∅ × ∅) = ∅
43feq2i 5361 . . 3 (∅:(∅ × ∅)⟶ℝ ↔ ∅:∅⟶ℝ)
52, 4mpbir 146 . 2 ∅:(∅ × ∅)⟶ℝ
6 noel 3428 . . . 4 ¬ 𝑥 ∈ ∅
76pm2.21i 646 . . 3 (𝑥 ∈ ∅ → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
87adantr 276 . 2 ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
96pm2.21i 646 . . 3 (𝑥 ∈ ∅ → (𝑥𝑦) ≤ ((𝑧𝑥) + (𝑧𝑦)))
1093ad2ant1 1018 . 2 ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) → (𝑥𝑦) ≤ ((𝑧𝑥) + (𝑧𝑦)))
111, 5, 8, 10ismeti 13931 1 ∅ ∈ (Met‘∅)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1353  wcel 2148  c0 3424   class class class wbr 4005   × cxp 4626  wf 5214  cfv 5218  (class class class)co 5877  cr 7812  0cc0 7813   + caddc 7816  cle 7995  Metcmet 13526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-met 13534
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator