| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0met | GIF version | ||
| Description: The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| 0met | ⊢ ∅ ∈ (Met‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4210 | . 2 ⊢ ∅ ∈ V | |
| 2 | f0 5515 | . . 3 ⊢ ∅:∅⟶ℝ | |
| 3 | xp0 5147 | . . . 4 ⊢ (∅ × ∅) = ∅ | |
| 4 | 3 | feq2i 5466 | . . 3 ⊢ (∅:(∅ × ∅)⟶ℝ ↔ ∅:∅⟶ℝ) |
| 5 | 2, 4 | mpbir 146 | . 2 ⊢ ∅:(∅ × ∅)⟶ℝ |
| 6 | noel 3495 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 7 | 6 | pm2.21i 649 | . . 3 ⊢ (𝑥 ∈ ∅ → ((𝑥∅𝑦) = 0 ↔ 𝑥 = 𝑦)) |
| 8 | 7 | adantr 276 | . 2 ⊢ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅) → ((𝑥∅𝑦) = 0 ↔ 𝑥 = 𝑦)) |
| 9 | 6 | pm2.21i 649 | . . 3 ⊢ (𝑥 ∈ ∅ → (𝑥∅𝑦) ≤ ((𝑧∅𝑥) + (𝑧∅𝑦))) |
| 10 | 9 | 3ad2ant1 1042 | . 2 ⊢ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) → (𝑥∅𝑦) ≤ ((𝑧∅𝑥) + (𝑧∅𝑦))) |
| 11 | 1, 5, 8, 10 | ismeti 15014 | 1 ⊢ ∅ ∈ (Met‘∅) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∅c0 3491 class class class wbr 4082 × cxp 4716 ⟶wf 5313 ‘cfv 5317 (class class class)co 6000 ℝcr 7994 0cc0 7995 + caddc 7998 ≤ cle 8178 Metcmet 14495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-map 6795 df-met 14503 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |