Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0met | GIF version |
Description: The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
0met | ⊢ ∅ ∈ (Met‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4109 | . 2 ⊢ ∅ ∈ V | |
2 | f0 5378 | . . 3 ⊢ ∅:∅⟶ℝ | |
3 | xp0 5023 | . . . 4 ⊢ (∅ × ∅) = ∅ | |
4 | 3 | feq2i 5331 | . . 3 ⊢ (∅:(∅ × ∅)⟶ℝ ↔ ∅:∅⟶ℝ) |
5 | 2, 4 | mpbir 145 | . 2 ⊢ ∅:(∅ × ∅)⟶ℝ |
6 | noel 3413 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
7 | 6 | pm2.21i 636 | . . 3 ⊢ (𝑥 ∈ ∅ → ((𝑥∅𝑦) = 0 ↔ 𝑥 = 𝑦)) |
8 | 7 | adantr 274 | . 2 ⊢ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅) → ((𝑥∅𝑦) = 0 ↔ 𝑥 = 𝑦)) |
9 | 6 | pm2.21i 636 | . . 3 ⊢ (𝑥 ∈ ∅ → (𝑥∅𝑦) ≤ ((𝑧∅𝑥) + (𝑧∅𝑦))) |
10 | 9 | 3ad2ant1 1008 | . 2 ⊢ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) → (𝑥∅𝑦) ≤ ((𝑧∅𝑥) + (𝑧∅𝑦))) |
11 | 1, 5, 8, 10 | ismeti 12986 | 1 ⊢ ∅ ∈ (Met‘∅) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∅c0 3409 class class class wbr 3982 × cxp 4602 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 ℝcr 7752 0cc0 7753 + caddc 7756 ≤ cle 7934 Metcmet 12621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-met 12629 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |