ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0met GIF version

Theorem 0met 12542
Description: The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
0met ∅ ∈ (Met‘∅)

Proof of Theorem 0met
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4050 . 2 ∅ ∈ V
2 f0 5308 . . 3 ∅:∅⟶ℝ
3 xp0 4953 . . . 4 (∅ × ∅) = ∅
43feq2i 5261 . . 3 (∅:(∅ × ∅)⟶ℝ ↔ ∅:∅⟶ℝ)
52, 4mpbir 145 . 2 ∅:(∅ × ∅)⟶ℝ
6 noel 3362 . . . 4 ¬ 𝑥 ∈ ∅
76pm2.21i 635 . . 3 (𝑥 ∈ ∅ → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
87adantr 274 . 2 ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
96pm2.21i 635 . . 3 (𝑥 ∈ ∅ → (𝑥𝑦) ≤ ((𝑧𝑥) + (𝑧𝑦)))
1093ad2ant1 1002 . 2 ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) → (𝑥𝑦) ≤ ((𝑧𝑥) + (𝑧𝑦)))
111, 5, 8, 10ismeti 12504 1 ∅ ∈ (Met‘∅)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1331  wcel 1480  c0 3358   class class class wbr 3924   × cxp 4532  wf 5114  cfv 5118  (class class class)co 5767  cr 7612  0cc0 7613   + caddc 7616  cle 7794  Metcmet 12139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-map 6537  df-met 12147
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator