Proof of Theorem 1fv
Step | Hyp | Ref
| Expression |
1 | | 0z 9157 |
. . . . . 6
⊢ 0 ∈
ℤ |
2 | | f1osng 5448 |
. . . . . 6
⊢ ((0
∈ ℤ ∧ 𝑁
∈ 𝑉) → {〈0,
𝑁〉}:{0}–1-1-onto→{𝑁}) |
3 | 1, 2 | mpan 421 |
. . . . 5
⊢ (𝑁 ∈ 𝑉 → {〈0, 𝑁〉}:{0}–1-1-onto→{𝑁}) |
4 | | f1ofo 5414 |
. . . . . 6
⊢
({〈0, 𝑁〉}:{0}–1-1-onto→{𝑁} → {〈0, 𝑁〉}:{0}–onto→{𝑁}) |
5 | | dffo2 5389 |
. . . . . . 7
⊢
({〈0, 𝑁〉}:{0}–onto→{𝑁} ↔ ({〈0, 𝑁〉}:{0}⟶{𝑁} ∧ ran {〈0, 𝑁〉} = {𝑁})) |
6 | 5 | biimpi 119 |
. . . . . 6
⊢
({〈0, 𝑁〉}:{0}–onto→{𝑁} → ({〈0, 𝑁〉}:{0}⟶{𝑁} ∧ ran {〈0, 𝑁〉} = {𝑁})) |
7 | | fzsn 9946 |
. . . . . . . . . . . . 13
⊢ (0 ∈
ℤ → (0...0) = {0}) |
8 | 1, 7 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (0...0) =
{0} |
9 | 8 | eqcomi 2158 |
. . . . . . . . . . 11
⊢ {0} =
(0...0) |
10 | 9 | feq2i 5306 |
. . . . . . . . . 10
⊢
({〈0, 𝑁〉}:{0}⟶{𝑁} ↔ {〈0, 𝑁〉}:(0...0)⟶{𝑁}) |
11 | 10 | biimpi 119 |
. . . . . . . . 9
⊢
({〈0, 𝑁〉}:{0}⟶{𝑁} → {〈0, 𝑁〉}:(0...0)⟶{𝑁}) |
12 | | snssi 3696 |
. . . . . . . . 9
⊢ (𝑁 ∈ 𝑉 → {𝑁} ⊆ 𝑉) |
13 | | fss 5324 |
. . . . . . . . 9
⊢
(({〈0, 𝑁〉}:(0...0)⟶{𝑁} ∧ {𝑁} ⊆ 𝑉) → {〈0, 𝑁〉}:(0...0)⟶𝑉) |
14 | 11, 12, 13 | syl2an 287 |
. . . . . . . 8
⊢
(({〈0, 𝑁〉}:{0}⟶{𝑁} ∧ 𝑁 ∈ 𝑉) → {〈0, 𝑁〉}:(0...0)⟶𝑉) |
15 | 14 | ex 114 |
. . . . . . 7
⊢
({〈0, 𝑁〉}:{0}⟶{𝑁} → (𝑁 ∈ 𝑉 → {〈0, 𝑁〉}:(0...0)⟶𝑉)) |
16 | 15 | adantr 274 |
. . . . . 6
⊢
(({〈0, 𝑁〉}:{0}⟶{𝑁} ∧ ran {〈0, 𝑁〉} = {𝑁}) → (𝑁 ∈ 𝑉 → {〈0, 𝑁〉}:(0...0)⟶𝑉)) |
17 | 4, 6, 16 | 3syl 17 |
. . . . 5
⊢
({〈0, 𝑁〉}:{0}–1-1-onto→{𝑁} → (𝑁 ∈ 𝑉 → {〈0, 𝑁〉}:(0...0)⟶𝑉)) |
18 | 3, 17 | mpcom 36 |
. . . 4
⊢ (𝑁 ∈ 𝑉 → {〈0, 𝑁〉}:(0...0)⟶𝑉) |
19 | | fvsng 5656 |
. . . . 5
⊢ ((0
∈ ℤ ∧ 𝑁
∈ 𝑉) → ({〈0,
𝑁〉}‘0) = 𝑁) |
20 | 1, 19 | mpan 421 |
. . . 4
⊢ (𝑁 ∈ 𝑉 → ({〈0, 𝑁〉}‘0) = 𝑁) |
21 | 18, 20 | jca 304 |
. . 3
⊢ (𝑁 ∈ 𝑉 → ({〈0, 𝑁〉}:(0...0)⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁)) |
22 | 21 | adantr 274 |
. 2
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → ({〈0, 𝑁〉}:(0...0)⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁)) |
23 | | feq1 5295 |
. . . 4
⊢ (𝑃 = {〈0, 𝑁〉} → (𝑃:(0...0)⟶𝑉 ↔ {〈0, 𝑁〉}:(0...0)⟶𝑉)) |
24 | | fveq1 5460 |
. . . . 5
⊢ (𝑃 = {〈0, 𝑁〉} → (𝑃‘0) = ({〈0, 𝑁〉}‘0)) |
25 | 24 | eqeq1d 2163 |
. . . 4
⊢ (𝑃 = {〈0, 𝑁〉} → ((𝑃‘0) = 𝑁 ↔ ({〈0, 𝑁〉}‘0) = 𝑁)) |
26 | 23, 25 | anbi12d 465 |
. . 3
⊢ (𝑃 = {〈0, 𝑁〉} → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({〈0, 𝑁〉}:(0...0)⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁))) |
27 | 26 | adantl 275 |
. 2
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({〈0, 𝑁〉}:(0...0)⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁))) |
28 | 22, 27 | mpbird 166 |
1
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁)) |