ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1fv GIF version

Theorem 1fv 10331
Description: A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
1fv ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁))

Proof of Theorem 1fv
StepHypRef Expression
1 0z 9453 . . . . . 6 0 ∈ ℤ
2 f1osng 5613 . . . . . 6 ((0 ∈ ℤ ∧ 𝑁𝑉) → {⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁})
31, 2mpan 424 . . . . 5 (𝑁𝑉 → {⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁})
4 f1ofo 5578 . . . . . 6 ({⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁} → {⟨0, 𝑁⟩}:{0}–onto→{𝑁})
5 dffo2 5551 . . . . . . 7 ({⟨0, 𝑁⟩}:{0}–onto→{𝑁} ↔ ({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ ran {⟨0, 𝑁⟩} = {𝑁}))
65biimpi 120 . . . . . 6 ({⟨0, 𝑁⟩}:{0}–onto→{𝑁} → ({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ ran {⟨0, 𝑁⟩} = {𝑁}))
7 fzsn 10258 . . . . . . . . . . . . 13 (0 ∈ ℤ → (0...0) = {0})
81, 7ax-mp 5 . . . . . . . . . . . 12 (0...0) = {0}
98eqcomi 2233 . . . . . . . . . . 11 {0} = (0...0)
109feq2i 5466 . . . . . . . . . 10 ({⟨0, 𝑁⟩}:{0}⟶{𝑁} ↔ {⟨0, 𝑁⟩}:(0...0)⟶{𝑁})
1110biimpi 120 . . . . . . . . 9 ({⟨0, 𝑁⟩}:{0}⟶{𝑁} → {⟨0, 𝑁⟩}:(0...0)⟶{𝑁})
12 snssi 3811 . . . . . . . . 9 (𝑁𝑉 → {𝑁} ⊆ 𝑉)
13 fss 5484 . . . . . . . . 9 (({⟨0, 𝑁⟩}:(0...0)⟶{𝑁} ∧ {𝑁} ⊆ 𝑉) → {⟨0, 𝑁⟩}:(0...0)⟶𝑉)
1411, 12, 13syl2an 289 . . . . . . . 8 (({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ 𝑁𝑉) → {⟨0, 𝑁⟩}:(0...0)⟶𝑉)
1514ex 115 . . . . . . 7 ({⟨0, 𝑁⟩}:{0}⟶{𝑁} → (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
1615adantr 276 . . . . . 6 (({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ ran {⟨0, 𝑁⟩} = {𝑁}) → (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
174, 6, 163syl 17 . . . . 5 ({⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁} → (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
183, 17mpcom 36 . . . 4 (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉)
19 fvsng 5834 . . . . 5 ((0 ∈ ℤ ∧ 𝑁𝑉) → ({⟨0, 𝑁⟩}‘0) = 𝑁)
201, 19mpan 424 . . . 4 (𝑁𝑉 → ({⟨0, 𝑁⟩}‘0) = 𝑁)
2118, 20jca 306 . . 3 (𝑁𝑉 → ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁))
2221adantr 276 . 2 ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁))
23 feq1 5455 . . . 4 (𝑃 = {⟨0, 𝑁⟩} → (𝑃:(0...0)⟶𝑉 ↔ {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
24 fveq1 5625 . . . . 5 (𝑃 = {⟨0, 𝑁⟩} → (𝑃‘0) = ({⟨0, 𝑁⟩}‘0))
2524eqeq1d 2238 . . . 4 (𝑃 = {⟨0, 𝑁⟩} → ((𝑃‘0) = 𝑁 ↔ ({⟨0, 𝑁⟩}‘0) = 𝑁))
2623, 25anbi12d 473 . . 3 (𝑃 = {⟨0, 𝑁⟩} → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁)))
2726adantl 277 . 2 ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁)))
2822, 27mpbird 167 1 ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wss 3197  {csn 3666  cop 3669  ran crn 4719  wf 5313  ontowfo 5315  1-1-ontowf1o 5316  cfv 5317  (class class class)co 6000  0cc0 7995  cz 9442  ...cfz 10200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-apti 8110
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-neg 8316  df-z 9443  df-uz 9719  df-fz 10201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator