ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1fv GIF version

Theorem 1fv 10243
Description: A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
1fv ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁))

Proof of Theorem 1fv
StepHypRef Expression
1 0z 9365 . . . . . 6 0 ∈ ℤ
2 f1osng 5557 . . . . . 6 ((0 ∈ ℤ ∧ 𝑁𝑉) → {⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁})
31, 2mpan 424 . . . . 5 (𝑁𝑉 → {⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁})
4 f1ofo 5523 . . . . . 6 ({⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁} → {⟨0, 𝑁⟩}:{0}–onto→{𝑁})
5 dffo2 5496 . . . . . . 7 ({⟨0, 𝑁⟩}:{0}–onto→{𝑁} ↔ ({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ ran {⟨0, 𝑁⟩} = {𝑁}))
65biimpi 120 . . . . . 6 ({⟨0, 𝑁⟩}:{0}–onto→{𝑁} → ({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ ran {⟨0, 𝑁⟩} = {𝑁}))
7 fzsn 10170 . . . . . . . . . . . . 13 (0 ∈ ℤ → (0...0) = {0})
81, 7ax-mp 5 . . . . . . . . . . . 12 (0...0) = {0}
98eqcomi 2208 . . . . . . . . . . 11 {0} = (0...0)
109feq2i 5413 . . . . . . . . . 10 ({⟨0, 𝑁⟩}:{0}⟶{𝑁} ↔ {⟨0, 𝑁⟩}:(0...0)⟶{𝑁})
1110biimpi 120 . . . . . . . . 9 ({⟨0, 𝑁⟩}:{0}⟶{𝑁} → {⟨0, 𝑁⟩}:(0...0)⟶{𝑁})
12 snssi 3776 . . . . . . . . 9 (𝑁𝑉 → {𝑁} ⊆ 𝑉)
13 fss 5431 . . . . . . . . 9 (({⟨0, 𝑁⟩}:(0...0)⟶{𝑁} ∧ {𝑁} ⊆ 𝑉) → {⟨0, 𝑁⟩}:(0...0)⟶𝑉)
1411, 12, 13syl2an 289 . . . . . . . 8 (({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ 𝑁𝑉) → {⟨0, 𝑁⟩}:(0...0)⟶𝑉)
1514ex 115 . . . . . . 7 ({⟨0, 𝑁⟩}:{0}⟶{𝑁} → (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
1615adantr 276 . . . . . 6 (({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ ran {⟨0, 𝑁⟩} = {𝑁}) → (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
174, 6, 163syl 17 . . . . 5 ({⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁} → (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
183, 17mpcom 36 . . . 4 (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉)
19 fvsng 5770 . . . . 5 ((0 ∈ ℤ ∧ 𝑁𝑉) → ({⟨0, 𝑁⟩}‘0) = 𝑁)
201, 19mpan 424 . . . 4 (𝑁𝑉 → ({⟨0, 𝑁⟩}‘0) = 𝑁)
2118, 20jca 306 . . 3 (𝑁𝑉 → ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁))
2221adantr 276 . 2 ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁))
23 feq1 5402 . . . 4 (𝑃 = {⟨0, 𝑁⟩} → (𝑃:(0...0)⟶𝑉 ↔ {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
24 fveq1 5569 . . . . 5 (𝑃 = {⟨0, 𝑁⟩} → (𝑃‘0) = ({⟨0, 𝑁⟩}‘0))
2524eqeq1d 2213 . . . 4 (𝑃 = {⟨0, 𝑁⟩} → ((𝑃‘0) = 𝑁 ↔ ({⟨0, 𝑁⟩}‘0) = 𝑁))
2623, 25anbi12d 473 . . 3 (𝑃 = {⟨0, 𝑁⟩} → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁)))
2726adantl 277 . 2 ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁)))
2822, 27mpbird 167 1 ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wss 3165  {csn 3632  cop 3635  ran crn 4674  wf 5264  ontowfo 5266  1-1-ontowf1o 5267  cfv 5268  (class class class)co 5934  0cc0 7907  cz 9354  ...cfz 10112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-apti 8022
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-neg 8228  df-z 9355  df-uz 9631  df-fz 10113
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator