Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > feq1i | GIF version |
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
feq1i.1 | ⊢ 𝐹 = 𝐺 |
Ref | Expression |
---|---|
feq1i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
2 | feq1 5330 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 ⟶wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-f 5202 |
This theorem is referenced by: ftpg 5680 frecfcllem 6383 frecsuclem 6385 omp1eomlem 7071 frecuzrdgrcl 10366 frecuzrdgrclt 10371 fxnn0nninf 10394 resqrexlemf 10971 algrf 11999 eulerthlemh 12185 eulerthlemth 12186 ennnfonelemh 12359 nninfdclemf 12404 limcmpted 13426 dvexp 13469 efcn 13483 subctctexmid 14034 |
Copyright terms: Public domain | W3C validator |