| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq1i | GIF version | ||
| Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq1i.1 | ⊢ 𝐹 = 𝐺 |
| Ref | Expression |
|---|---|
| feq1i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
| 2 | feq1 5414 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ⟶wf 5272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-fun 5278 df-fn 5279 df-f 5280 |
| This theorem is referenced by: ftpg 5775 frecfcllem 6497 frecsuclem 6499 omp1eomlem 7203 frecuzrdgrcl 10562 frecuzrdgrclt 10567 fxnn0nninf 10591 resqrexlemf 11362 algrf 12411 eulerthlemh 12597 eulerthlemth 12598 ennnfonelemh 12819 nninfdclemf 12864 mulgval 13502 znf1o 14457 limcmpted 15179 dvexp 15227 efcn 15284 subctctexmid 16011 |
| Copyright terms: Public domain | W3C validator |