ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq1i GIF version

Theorem feq1i 5397
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
feq1i.1 𝐹 = 𝐺
Assertion
Ref Expression
feq1i (𝐹:𝐴𝐵𝐺:𝐴𝐵)

Proof of Theorem feq1i
StepHypRef Expression
1 feq1i.1 . 2 𝐹 = 𝐺
2 feq1 5387 . 2 (𝐹 = 𝐺 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
31, 2ax-mp 5 1 (𝐹:𝐴𝐵𝐺:𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wf 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-fun 5257  df-fn 5258  df-f 5259
This theorem is referenced by:  ftpg  5743  frecfcllem  6459  frecsuclem  6461  omp1eomlem  7155  frecuzrdgrcl  10484  frecuzrdgrclt  10489  fxnn0nninf  10513  resqrexlemf  11154  algrf  12186  eulerthlemh  12372  eulerthlemth  12373  ennnfonelemh  12564  nninfdclemf  12609  mulgval  13195  znf1o  14150  limcmpted  14842  dvexp  14890  efcn  14944  subctctexmid  15561
  Copyright terms: Public domain W3C validator