ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpo GIF version

Theorem fmpo 6300
Description: Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
Hypothesis
Ref Expression
fmpo.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
fmpo (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹:(𝐴 × 𝐵)⟶𝐷)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fmpo
StepHypRef Expression
1 fmpo.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21fmpox 6299 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹: 𝑥𝐴 ({𝑥} × 𝐵)⟶𝐷)
3 iunxpconst 4743 . . 3 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
43feq2i 5429 . 2 (𝐹: 𝑥𝐴 ({𝑥} × 𝐵)⟶𝐷𝐹:(𝐴 × 𝐵)⟶𝐷)
52, 4bitri 184 1 (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹:(𝐴 × 𝐵)⟶𝐷)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  wcel 2177  wral 2485  {csn 3638   ciun 3933   × cxp 4681  wf 5276  cmpo 5959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240
This theorem is referenced by:  fnmpo  6301  ovmpoelrn  6306  fmpoco  6315  eroprf  6728  mapxpen  6960  subf  8294  xaddf  9986  ixxf  10040  ioof  10113  fzf  10154  fzof  10286  gcdf  12368  eucalgf  12452  xpsff1o  13256  mgmplusf  13273  grpsubf  13486  lmodscaf  14147  txuni2  14803  txbasval  14814  cnmpt12  14834  cnmpt21  14838  cnmpt2t  14840  cnmpt22  14841  cnmptcom  14845  txswaphmeo  14868  blfvalps  14932  blfps  14956  blf  14957  bdmet  15049  xmetxp  15054  sgmf  15533
  Copyright terms: Public domain W3C validator