ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpo GIF version

Theorem fmpo 6256
Description: Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
Hypothesis
Ref Expression
fmpo.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
fmpo (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹:(𝐴 × 𝐵)⟶𝐷)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fmpo
StepHypRef Expression
1 fmpo.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21fmpox 6255 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹: 𝑥𝐴 ({𝑥} × 𝐵)⟶𝐷)
3 iunxpconst 4720 . . 3 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
43feq2i 5398 . 2 (𝐹: 𝑥𝐴 ({𝑥} × 𝐵)⟶𝐷𝐹:(𝐴 × 𝐵)⟶𝐷)
52, 4bitri 184 1 (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹:(𝐴 × 𝐵)⟶𝐷)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wcel 2164  wral 2472  {csn 3619   ciun 3913   × cxp 4658  wf 5251  cmpo 5921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196
This theorem is referenced by:  fnmpo  6257  ovmpoelrn  6262  fmpoco  6271  eroprf  6684  mapxpen  6906  subf  8223  xaddf  9913  ixxf  9967  ioof  10040  fzf  10081  fzof  10213  gcdf  12112  eucalgf  12196  xpsff1o  12935  mgmplusf  12952  grpsubf  13154  lmodscaf  13809  txuni2  14435  txbasval  14446  cnmpt12  14466  cnmpt21  14470  cnmpt2t  14472  cnmpt22  14473  cnmptcom  14477  txswaphmeo  14500  blfvalps  14564  blfps  14588  blf  14589  bdmet  14681  xmetxp  14686
  Copyright terms: Public domain W3C validator