ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpo GIF version

Theorem fmpo 6277
Description: Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
Hypothesis
Ref Expression
fmpo.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
fmpo (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹:(𝐴 × 𝐵)⟶𝐷)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fmpo
StepHypRef Expression
1 fmpo.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21fmpox 6276 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹: 𝑥𝐴 ({𝑥} × 𝐵)⟶𝐷)
3 iunxpconst 4733 . . 3 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
43feq2i 5413 . 2 (𝐹: 𝑥𝐴 ({𝑥} × 𝐵)⟶𝐷𝐹:(𝐴 × 𝐵)⟶𝐷)
52, 4bitri 184 1 (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹:(𝐴 × 𝐵)⟶𝐷)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1372  wcel 2175  wral 2483  {csn 3632   ciun 3926   × cxp 4671  wf 5264  cmpo 5936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fv 5276  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217
This theorem is referenced by:  fnmpo  6278  ovmpoelrn  6283  fmpoco  6292  eroprf  6705  mapxpen  6927  subf  8256  xaddf  9948  ixxf  10002  ioof  10075  fzf  10116  fzof  10248  gcdf  12212  eucalgf  12296  xpsff1o  13099  mgmplusf  13116  grpsubf  13329  lmodscaf  13990  txuni2  14646  txbasval  14657  cnmpt12  14677  cnmpt21  14681  cnmpt2t  14683  cnmpt22  14684  cnmptcom  14688  txswaphmeo  14711  blfvalps  14775  blfps  14799  blf  14800  bdmet  14892  xmetxp  14897  sgmf  15376
  Copyright terms: Public domain W3C validator