| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > upgr1edc | GIF version | ||
| Description: A pseudograph with one edge. Such a graph is actually a simple pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.) |
| Ref | Expression |
|---|---|
| upgr1e.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgr1e.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| upgr1e.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| upgr1e.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| upgr1edc.dc | ⊢ (𝜑 → DECID 𝐵 = 𝐶) |
| upgr1e.e | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐶}〉}) |
| Ref | Expression |
|---|---|
| upgr1edc | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgr1e.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | upgr1e.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 3 | upgr1e.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 4 | prexg 4260 | . . . . . . . 8 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → {𝐵, 𝐶} ∈ V) | |
| 5 | 2, 3, 4 | syl2anc 411 | . . . . . . 7 ⊢ (𝜑 → {𝐵, 𝐶} ∈ V) |
| 6 | snidg 3664 | . . . . . . 7 ⊢ ({𝐵, 𝐶} ∈ V → {𝐵, 𝐶} ∈ {{𝐵, 𝐶}}) | |
| 7 | 5, 6 | syl 14 | . . . . . 6 ⊢ (𝜑 → {𝐵, 𝐶} ∈ {{𝐵, 𝐶}}) |
| 8 | 1, 7 | fsnd 5575 | . . . . 5 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}⟶{{𝐵, 𝐶}}) |
| 9 | 2, 3 | prssd 3795 | . . . . . . . 8 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝑉) |
| 10 | upgr1e.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 11 | 9, 10 | sseqtrdi 3243 | . . . . . . 7 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ (Vtx‘𝐺)) |
| 12 | elpwg 3626 | . . . . . . . 8 ⊢ ({𝐵, 𝐶} ∈ V → ({𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝐵, 𝐶} ⊆ (Vtx‘𝐺))) | |
| 13 | 5, 12 | syl 14 | . . . . . . 7 ⊢ (𝜑 → ({𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝐵, 𝐶} ⊆ (Vtx‘𝐺))) |
| 14 | 11, 13 | mpbird 167 | . . . . . 6 ⊢ (𝜑 → {𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺)) |
| 15 | upgr1edc.dc | . . . . . 6 ⊢ (𝜑 → DECID 𝐵 = 𝐶) | |
| 16 | 14, 2, 3, 15 | upgr1elem1 15763 | . . . . 5 ⊢ (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 17 | 8, 16 | fssd 5445 | . . . 4 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 18 | 17 | ffdmd 5454 | . . 3 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:dom {〈𝐴, {𝐵, 𝐶}〉}⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 19 | upgr1e.e | . . . 4 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐶}〉}) | |
| 20 | 19 | dmeqd 4886 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝐺) = dom {〈𝐴, {𝐵, 𝐶}〉}) |
| 21 | 19, 20 | feq12d 5422 | . . 3 ⊢ (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ↔ {〈𝐴, {𝐵, 𝐶}〉}:dom {〈𝐴, {𝐵, 𝐶}〉}⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) |
| 22 | 18, 21 | mpbird 167 | . 2 ⊢ (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 23 | 10 | 1vgrex 15669 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐺 ∈ V) |
| 24 | eqid 2206 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 25 | eqid 2206 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 26 | 24, 25 | isupgren 15741 | . . 3 ⊢ (𝐺 ∈ V → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) |
| 27 | 2, 23, 26 | 3syl 17 | . 2 ⊢ (𝜑 → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) |
| 28 | 22, 27 | mpbird 167 | 1 ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2177 {crab 2489 Vcvv 2773 ⊆ wss 3168 𝒫 cpw 3618 {csn 3635 {cpr 3636 〈cop 3638 class class class wbr 4048 dom cdm 4680 ⟶wf 5273 ‘cfv 5277 1oc1o 6505 2oc2o 6506 ≈ cen 6835 Vtxcvtx 15661 iEdgciedg 15662 UPGraphcupgr 15737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-1o 6512 df-2o 6513 df-er 6630 df-en 6838 df-sub 8258 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-5 9111 df-6 9112 df-7 9113 df-8 9114 df-9 9115 df-n0 9309 df-dec 9518 df-ndx 12885 df-slot 12886 df-base 12888 df-edgf 15654 df-vtx 15663 df-iedg 15664 df-upgren 15739 |
| This theorem is referenced by: upgr1eopdc 15766 |
| Copyright terms: Public domain | W3C validator |