![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opelf | GIF version |
Description: The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opelf | ⊢ ((𝐹:𝐴⟶𝐵 ∧ ⟨𝐶, 𝐷⟩ ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 5385 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
2 | 1 | sseld 3156 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (⟨𝐶, 𝐷⟩ ∈ 𝐹 → ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵))) |
3 | opelxp 4658 | . . 3 ⊢ (⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) | |
4 | 2, 3 | imbitrdi 161 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (⟨𝐶, 𝐷⟩ ∈ 𝐹 → (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵))) |
5 | 4 | imp 124 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ⟨𝐶, 𝐷⟩ ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 ⟨cop 3597 × cxp 4626 ⟶wf 5214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-rel 4635 df-cnv 4636 df-dm 4638 df-rn 4639 df-fun 5220 df-fn 5221 df-f 5222 |
This theorem is referenced by: feu 5400 fcnvres 5401 fsn 5690 |
Copyright terms: Public domain | W3C validator |