| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelf | GIF version | ||
| Description: The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opelf | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝐶, 𝐷〉 ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssxp 5452 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
| 2 | 1 | sseld 3196 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (〈𝐶, 𝐷〉 ∈ 𝐹 → 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵))) |
| 3 | opelxp 4712 | . . 3 ⊢ (〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) | |
| 4 | 2, 3 | imbitrdi 161 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (〈𝐶, 𝐷〉 ∈ 𝐹 → (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵))) |
| 5 | 4 | imp 124 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝐶, 𝐷〉 ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 〈cop 3640 × cxp 4680 ⟶wf 5275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-br 4051 df-opab 4113 df-xp 4688 df-rel 4689 df-cnv 4690 df-dm 4692 df-rn 4693 df-fun 5281 df-fn 5282 df-f 5283 |
| This theorem is referenced by: feu 5469 fcnvres 5470 fsn 5764 |
| Copyright terms: Public domain | W3C validator |