| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffun | GIF version | ||
| Description: A mapping is a function. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffun | ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5410 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 5356 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fun wfun 5253 Fn wfn 5254 ⟶wf 5255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5262 df-f 5263 |
| This theorem is referenced by: ffund 5414 funssxp 5430 f00 5452 fofun 5484 fun11iun 5528 fimacnv 5694 dff3im 5710 resflem 5729 fmptco 5731 fliftf 5849 smores2 6361 pmfun 6736 elmapfun 6740 pmresg 6744 ac6sfi 6968 casef 7163 omp1eomlem 7169 ctm 7184 exmidfodomrlemim 7282 nn0supp 9320 frecuzrdg0 10524 frecuzrdgsuc 10525 frecuzrdgdomlem 10528 frecuzrdg0t 10533 frecuzrdgsuctlem 10534 climdm 11479 sum0 11572 isumz 11573 fsumsersdc 11579 isumclim 11605 zprodap0 11765 psrbaglesuppg 14304 iscnp3 14525 cnpnei 14541 cnclima 14545 cnrest2 14558 hmeores 14637 metcnp 14834 qtopbasss 14843 tgqioo 14877 dvaddxx 15025 dvmulxx 15026 dviaddf 15027 dvimulf 15028 dvef 15049 pilem3 15105 |
| Copyright terms: Public domain | W3C validator |