![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ffun | GIF version |
Description: A mapping is a function. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
ffun | ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5230 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 5178 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fun wfun 5075 Fn wfn 5076 ⟶wf 5077 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-fn 5084 df-f 5085 |
This theorem is referenced by: ffund 5234 funssxp 5250 f00 5272 fofun 5304 fun11iun 5344 fimacnv 5503 dff3im 5519 resflem 5538 fmptco 5540 fliftf 5654 smores2 6145 pmfun 6516 elmapfun 6520 pmresg 6524 ac6sfi 6745 casef 6925 omp1eomlem 6931 ctm 6946 exmidfodomrlemim 7005 nn0supp 8933 frecuzrdg0 10079 frecuzrdgsuc 10080 frecuzrdgdomlem 10083 frecuzrdg0t 10088 frecuzrdgsuctlem 10089 climdm 10956 sum0 11049 isumz 11050 fsumsersdc 11056 isumclim 11082 iscnp3 12214 cnpnei 12230 cnclima 12234 cnrest2 12247 metcnp 12501 qtopbasss 12510 tgqioo 12533 dvaddxx 12622 dvmulxx 12623 dviaddf 12624 dvimulf 12625 |
Copyright terms: Public domain | W3C validator |