ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffun GIF version

Theorem ffun 5406
Description: A mapping is a function. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
ffun (𝐹:𝐴𝐵 → Fun 𝐹)

Proof of Theorem ffun
StepHypRef Expression
1 ffn 5403 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fnfun 5351 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
31, 2syl 14 1 (𝐹:𝐴𝐵 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  Fun wfun 5248   Fn wfn 5249  wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fn 5257  df-f 5258
This theorem is referenced by:  ffund  5407  funssxp  5423  f00  5445  fofun  5477  fun11iun  5521  fimacnv  5687  dff3im  5703  resflem  5722  fmptco  5724  fliftf  5842  smores2  6347  pmfun  6722  elmapfun  6726  pmresg  6730  ac6sfi  6954  casef  7147  omp1eomlem  7153  ctm  7168  exmidfodomrlemim  7261  nn0supp  9292  frecuzrdg0  10484  frecuzrdgsuc  10485  frecuzrdgdomlem  10488  frecuzrdg0t  10493  frecuzrdgsuctlem  10494  climdm  11438  sum0  11531  isumz  11532  fsumsersdc  11538  isumclim  11564  zprodap0  11724  psrbaglesuppg  14158  iscnp3  14371  cnpnei  14387  cnclima  14391  cnrest2  14404  hmeores  14483  metcnp  14680  qtopbasss  14689  tgqioo  14715  dvaddxx  14852  dvmulxx  14853  dviaddf  14854  dvimulf  14855  dvef  14873  pilem3  14918
  Copyright terms: Public domain W3C validator