| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffun | GIF version | ||
| Description: A mapping is a function. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffun | ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5431 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 5376 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fun wfun 5270 Fn wfn 5271 ⟶wf 5272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5279 df-f 5280 |
| This theorem is referenced by: ffund 5435 funssxp 5451 f00 5474 fofun 5506 fun11iun 5550 fimacnv 5716 dff3im 5732 resflem 5751 fmptco 5753 fliftf 5875 smores2 6387 pmfun 6762 elmapfun 6766 pmresg 6770 ac6sfi 7002 casef 7197 omp1eomlem 7203 ctm 7218 exmidfodomrlemim 7316 nn0supp 9354 frecuzrdg0 10565 frecuzrdgsuc 10566 frecuzrdgdomlem 10569 frecuzrdg0t 10574 frecuzrdgsuctlem 10575 climdm 11650 sum0 11743 isumz 11744 fsumsersdc 11750 isumclim 11776 zprodap0 11936 psrbaglesuppg 14478 iscnp3 14719 cnpnei 14735 cnclima 14739 cnrest2 14752 hmeores 14831 metcnp 15028 qtopbasss 15037 tgqioo 15071 dvaddxx 15219 dvmulxx 15220 dviaddf 15221 dvimulf 15222 dvef 15243 pilem3 15299 |
| Copyright terms: Public domain | W3C validator |