| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffun | GIF version | ||
| Description: A mapping is a function. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffun | ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5473 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 5418 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fun wfun 5312 Fn wfn 5313 ⟶wf 5314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5321 df-f 5322 |
| This theorem is referenced by: ffund 5477 funssxp 5495 f00 5519 fofun 5551 fun11iun 5595 fimacnv 5766 dff3im 5782 resflem 5801 fmptco 5803 fliftf 5929 smores2 6446 pmfun 6823 elmapfun 6827 pmresg 6831 ac6sfi 7068 casef 7263 omp1eomlem 7269 ctm 7284 exmidfodomrlemim 7387 nn0supp 9429 frecuzrdg0 10643 frecuzrdgsuc 10644 frecuzrdgdomlem 10647 frecuzrdg0t 10652 frecuzrdgsuctlem 10653 climdm 11814 sum0 11907 isumz 11908 fsumsersdc 11914 isumclim 11940 zprodap0 12100 psrbaglesuppg 14644 iscnp3 14885 cnpnei 14901 cnclima 14905 cnrest2 14918 hmeores 14997 metcnp 15194 qtopbasss 15203 tgqioo 15237 dvaddxx 15385 dvmulxx 15386 dviaddf 15387 dvimulf 15388 dvef 15409 pilem3 15465 upgr2wlkdc 16096 |
| Copyright terms: Public domain | W3C validator |