| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffun | GIF version | ||
| Description: A mapping is a function. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| ffun | ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5449 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fnfun 5394 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fun wfun 5288 Fn wfn 5289 ⟶wf 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fn 5297 df-f 5298 |
| This theorem is referenced by: ffund 5453 funssxp 5469 f00 5493 fofun 5525 fun11iun 5569 fimacnv 5737 dff3im 5753 resflem 5772 fmptco 5774 fliftf 5896 smores2 6410 pmfun 6785 elmapfun 6789 pmresg 6793 ac6sfi 7028 casef 7223 omp1eomlem 7229 ctm 7244 exmidfodomrlemim 7347 nn0supp 9389 frecuzrdg0 10602 frecuzrdgsuc 10603 frecuzrdgdomlem 10606 frecuzrdg0t 10611 frecuzrdgsuctlem 10612 climdm 11772 sum0 11865 isumz 11866 fsumsersdc 11872 isumclim 11898 zprodap0 12058 psrbaglesuppg 14601 iscnp3 14842 cnpnei 14858 cnclima 14862 cnrest2 14875 hmeores 14954 metcnp 15151 qtopbasss 15160 tgqioo 15194 dvaddxx 15342 dvmulxx 15343 dviaddf 15344 dvimulf 15345 dvef 15366 pilem3 15422 |
| Copyright terms: Public domain | W3C validator |