Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ffun | GIF version |
Description: A mapping is a function. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
ffun | ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5337 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 5285 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fun wfun 5182 Fn wfn 5183 ⟶wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-fn 5191 df-f 5192 |
This theorem is referenced by: ffund 5341 funssxp 5357 f00 5379 fofun 5411 fun11iun 5453 fimacnv 5614 dff3im 5630 resflem 5649 fmptco 5651 fliftf 5767 smores2 6262 pmfun 6634 elmapfun 6638 pmresg 6642 ac6sfi 6864 casef 7053 omp1eomlem 7059 ctm 7074 exmidfodomrlemim 7157 nn0supp 9166 frecuzrdg0 10348 frecuzrdgsuc 10349 frecuzrdgdomlem 10352 frecuzrdg0t 10357 frecuzrdgsuctlem 10358 climdm 11236 sum0 11329 isumz 11330 fsumsersdc 11336 isumclim 11362 zprodap0 11522 iscnp3 12843 cnpnei 12859 cnclima 12863 cnrest2 12876 hmeores 12955 metcnp 13152 qtopbasss 13161 tgqioo 13187 dvaddxx 13307 dvmulxx 13308 dviaddf 13309 dvimulf 13310 dvef 13328 pilem3 13344 |
Copyright terms: Public domain | W3C validator |