ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcj GIF version

Theorem dvcj 14650
Description: The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr 14649. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvcj ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹)))

Proof of Theorem dvcj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . 5 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝐹:𝑋⟶ℂ)
2 simplr 528 . . . . 5 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑋 ⊆ ℝ)
3 simpr 110 . . . . 5 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥 ∈ dom (ℝ D 𝐹))
41, 2, 3dvcjbr 14649 . . . 4 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝑥)))
5 cjf 10891 . . . . . . . . . . . 12 ∗:ℂ⟶ℂ
6 fco 5400 . . . . . . . . . . . 12 ((∗:ℂ⟶ℂ ∧ 𝐹:𝑋⟶ℂ) → (∗ ∘ 𝐹):𝑋⟶ℂ)
75, 6mpan 424 . . . . . . . . . . 11 (𝐹:𝑋⟶ℂ → (∗ ∘ 𝐹):𝑋⟶ℂ)
87adantr 276 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ 𝐹):𝑋⟶ℂ)
97fdmd 5391 . . . . . . . . . . . 12 (𝐹:𝑋⟶ℂ → dom (∗ ∘ 𝐹) = 𝑋)
109adantr 276 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (∗ ∘ 𝐹) = 𝑋)
1110feq2d 5372 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ((∗ ∘ 𝐹):dom (∗ ∘ 𝐹)⟶ℂ ↔ (∗ ∘ 𝐹):𝑋⟶ℂ))
128, 11mpbird 167 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ 𝐹):dom (∗ ∘ 𝐹)⟶ℂ)
13 simpr 110 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝑋 ⊆ ℝ)
1410, 13eqsstrd 3206 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (∗ ∘ 𝐹) ⊆ ℝ)
15 cnex 7966 . . . . . . . . . 10 ℂ ∈ V
16 reex 7976 . . . . . . . . . 10 ℝ ∈ V
1715, 16elpm2 6707 . . . . . . . . 9 ((∗ ∘ 𝐹) ∈ (ℂ ↑pm ℝ) ↔ ((∗ ∘ 𝐹):dom (∗ ∘ 𝐹)⟶ℂ ∧ dom (∗ ∘ 𝐹) ⊆ ℝ))
1812, 14, 17sylanbrc 417 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ 𝐹) ∈ (ℂ ↑pm ℝ))
19 dvfpm 14635 . . . . . . . 8 ((∗ ∘ 𝐹) ∈ (ℂ ↑pm ℝ) → (ℝ D (∗ ∘ 𝐹)):dom (ℝ D (∗ ∘ 𝐹))⟶ℂ)
2018, 19syl 14 . . . . . . 7 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)):dom (ℝ D (∗ ∘ 𝐹))⟶ℂ)
2120ffund 5388 . . . . . 6 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → Fun (ℝ D (∗ ∘ 𝐹)))
22 funbrfv 5575 . . . . . 6 (Fun (ℝ D (∗ ∘ 𝐹)) → (𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝑥)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥))))
2321, 22syl 14 . . . . 5 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝑥)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥))))
2423adantr 276 . . . 4 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → (𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝑥)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥))))
254, 24mpd 13 . . 3 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥)))
2625mpteq2dva 4108 . 2 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥 ∈ dom (ℝ D 𝐹) ↦ ((ℝ D (∗ ∘ 𝐹))‘𝑥)) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ (∗‘((ℝ D 𝐹)‘𝑥))))
27 vex 2755 . . . . . . . . . 10 𝑥 ∈ V
2820ffvelcdmda 5672 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) ∈ ℂ)
2928cjcld 10984 . . . . . . . . . 10 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → (∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥)) ∈ ℂ)
307ad2antrr 488 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → (∗ ∘ 𝐹):𝑋⟶ℂ)
31 simplr 528 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → 𝑋 ⊆ ℝ)
32 simpr 110 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹)))
3330, 31, 32dvcjbr 14649 . . . . . . . . . 10 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → 𝑥(ℝ D (∗ ∘ (∗ ∘ 𝐹)))(∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥)))
34 breldmg 4851 . . . . . . . . . 10 ((𝑥 ∈ V ∧ (∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥)) ∈ ℂ ∧ 𝑥(ℝ D (∗ ∘ (∗ ∘ 𝐹)))(∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥))) → 𝑥 ∈ dom (ℝ D (∗ ∘ (∗ ∘ 𝐹))))
3527, 29, 33, 34mp3an2i 1353 . . . . . . . . 9 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → 𝑥 ∈ dom (ℝ D (∗ ∘ (∗ ∘ 𝐹))))
3635ex 115 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹)) → 𝑥 ∈ dom (ℝ D (∗ ∘ (∗ ∘ 𝐹)))))
3736ssrdv 3176 . . . . . . 7 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D (∗ ∘ 𝐹)) ⊆ dom (ℝ D (∗ ∘ (∗ ∘ 𝐹))))
38 ffvelcdm 5670 . . . . . . . . . . . . 13 ((𝐹:𝑋⟶ℂ ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
3938adantlr 477 . . . . . . . . . . . 12 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
4039cjcjd 10987 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥𝑋) → (∗‘(∗‘(𝐹𝑥))) = (𝐹𝑥))
4140mpteq2dva 4108 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥𝑋 ↦ (∗‘(∗‘(𝐹𝑥)))) = (𝑥𝑋 ↦ (𝐹𝑥)))
4239cjcld 10984 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥𝑋) → (∗‘(𝐹𝑥)) ∈ ℂ)
43 simpl 109 . . . . . . . . . . . . 13 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:𝑋⟶ℂ)
4443feqmptd 5590 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
455a1i 9 . . . . . . . . . . . . 13 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ∗:ℂ⟶ℂ)
4645feqmptd 5590 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ∗ = (𝑦 ∈ ℂ ↦ (∗‘𝑦)))
47 fveq2 5534 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑥) → (∗‘𝑦) = (∗‘(𝐹𝑥)))
4839, 44, 46, 47fmptco 5703 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ 𝐹) = (𝑥𝑋 ↦ (∗‘(𝐹𝑥))))
49 fveq2 5534 . . . . . . . . . . 11 (𝑦 = (∗‘(𝐹𝑥)) → (∗‘𝑦) = (∗‘(∗‘(𝐹𝑥))))
5042, 48, 46, 49fmptco 5703 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ (∗ ∘ 𝐹)) = (𝑥𝑋 ↦ (∗‘(∗‘(𝐹𝑥)))))
5141, 50, 443eqtr4d 2232 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ (∗ ∘ 𝐹)) = 𝐹)
5251oveq2d 5913 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ (∗ ∘ 𝐹))) = (ℝ D 𝐹))
5352dmeqd 4847 . . . . . . 7 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D (∗ ∘ (∗ ∘ 𝐹))) = dom (ℝ D 𝐹))
5437, 53sseqtrd 3208 . . . . . 6 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D (∗ ∘ 𝐹)) ⊆ dom (ℝ D 𝐹))
55 ffdm 5405 . . . . . . . . . . . . 13 (𝐹:𝑋⟶ℂ → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑋))
5655simpld 112 . . . . . . . . . . . 12 (𝐹:𝑋⟶ℂ → 𝐹:dom 𝐹⟶ℂ)
5756adantr 276 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:dom 𝐹⟶ℂ)
58 fdm 5390 . . . . . . . . . . . . 13 (𝐹:𝑋⟶ℂ → dom 𝐹 = 𝑋)
5958adantr 276 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom 𝐹 = 𝑋)
6059, 13eqsstrd 3206 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom 𝐹 ⊆ ℝ)
6115, 16elpm2 6707 . . . . . . . . . . 11 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
6257, 60, 61sylanbrc 417 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
63 dvfpm 14635 . . . . . . . . . 10 (𝐹 ∈ (ℂ ↑pm ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
6462, 63syl 14 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
6564ffvelcdmda 5672 . . . . . . . 8 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
6665cjcld 10984 . . . . . . 7 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → (∗‘((ℝ D 𝐹)‘𝑥)) ∈ ℂ)
67 breldmg 4851 . . . . . . 7 ((𝑥 ∈ V ∧ (∗‘((ℝ D 𝐹)‘𝑥)) ∈ ℂ ∧ 𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝑥))) → 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹)))
6827, 66, 4, 67mp3an2i 1353 . . . . . 6 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹)))
6954, 68eqelssd 3189 . . . . 5 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D (∗ ∘ 𝐹)) = dom (ℝ D 𝐹))
7069feq2d 5372 . . . 4 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ((ℝ D (∗ ∘ 𝐹)):dom (ℝ D (∗ ∘ 𝐹))⟶ℂ ↔ (ℝ D (∗ ∘ 𝐹)):dom (ℝ D 𝐹)⟶ℂ))
7120, 70mpbid 147 . . 3 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)):dom (ℝ D 𝐹)⟶ℂ)
7271feqmptd 5590 . 2 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ ((ℝ D (∗ ∘ 𝐹))‘𝑥)))
7364feqmptd 5590 . . 3 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ ((ℝ D 𝐹)‘𝑥)))
74 fveq2 5534 . . 3 (𝑦 = ((ℝ D 𝐹)‘𝑥) → (∗‘𝑦) = (∗‘((ℝ D 𝐹)‘𝑥)))
7565, 73, 46, 74fmptco 5703 . 2 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ (ℝ D 𝐹)) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ (∗‘((ℝ D 𝐹)‘𝑥))))
7626, 72, 753eqtr4d 2232 1 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  Vcvv 2752  wss 3144   class class class wbr 4018  cmpt 4079  dom cdm 4644  ccom 4648  Fun wfun 5229  wf 5231  cfv 5235  (class class class)co 5897  pm cpm 6676  cc 7840  cr 7841  ccj 10883   D cdv 14601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-map 6677  df-pm 6678  df-sup 7014  df-inf 7015  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-xneg 9804  df-xadd 9805  df-ioo 9924  df-seqfrec 10479  df-exp 10554  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-rest 12749  df-topgen 12768  df-psmet 13873  df-xmet 13874  df-met 13875  df-bl 13876  df-mopn 13877  df-top 13975  df-topon 13988  df-bases 14020  df-ntr 14073  df-cn 14165  df-cnp 14166  df-cncf 14535  df-limced 14602  df-dvap 14603
This theorem is referenced by:  dvfre  14651  dvmptcjx  14663
  Copyright terms: Public domain W3C validator