Step | Hyp | Ref
| Expression |
1 | | simpll 527 |
. . . . 5
β’ (((πΉ:πβΆβ β§ π β β) β§ π₯ β dom (β D πΉ)) β πΉ:πβΆβ) |
2 | | simplr 528 |
. . . . 5
β’ (((πΉ:πβΆβ β§ π β β) β§ π₯ β dom (β D πΉ)) β π β β) |
3 | | simpr 110 |
. . . . 5
β’ (((πΉ:πβΆβ β§ π β β) β§ π₯ β dom (β D πΉ)) β π₯ β dom (β D πΉ)) |
4 | 1, 2, 3 | dvcjbr 14257 |
. . . 4
β’ (((πΉ:πβΆβ β§ π β β) β§ π₯ β dom (β D πΉ)) β π₯(β D (β β πΉ))(ββ((β D
πΉ)βπ₯))) |
5 | | cjf 10858 |
. . . . . . . . . . . 12
β’
β:ββΆβ |
6 | | fco 5383 |
. . . . . . . . . . . 12
β’
((β:ββΆβ β§ πΉ:πβΆβ) β (β β
πΉ):πβΆβ) |
7 | 5, 6 | mpan 424 |
. . . . . . . . . . 11
β’ (πΉ:πβΆβ β (β β
πΉ):πβΆβ) |
8 | 7 | adantr 276 |
. . . . . . . . . 10
β’ ((πΉ:πβΆβ β§ π β β) β (β β
πΉ):πβΆβ) |
9 | 7 | fdmd 5374 |
. . . . . . . . . . . 12
β’ (πΉ:πβΆβ β dom (β β
πΉ) = π) |
10 | 9 | adantr 276 |
. . . . . . . . . . 11
β’ ((πΉ:πβΆβ β§ π β β) β dom (β
β πΉ) = π) |
11 | 10 | feq2d 5355 |
. . . . . . . . . 10
β’ ((πΉ:πβΆβ β§ π β β) β ((β β
πΉ):dom (β β
πΉ)βΆβ β
(β β πΉ):πβΆβ)) |
12 | 8, 11 | mpbird 167 |
. . . . . . . . 9
β’ ((πΉ:πβΆβ β§ π β β) β (β β
πΉ):dom (β β
πΉ)βΆβ) |
13 | | simpr 110 |
. . . . . . . . . 10
β’ ((πΉ:πβΆβ β§ π β β) β π β β) |
14 | 10, 13 | eqsstrd 3193 |
. . . . . . . . 9
β’ ((πΉ:πβΆβ β§ π β β) β dom (β
β πΉ) β
β) |
15 | | cnex 7937 |
. . . . . . . . . 10
β’ β
β V |
16 | | reex 7947 |
. . . . . . . . . 10
β’ β
β V |
17 | 15, 16 | elpm2 6682 |
. . . . . . . . 9
β’
((β β πΉ) β (β βpm
β) β ((β β πΉ):dom (β β πΉ)βΆβ β§ dom (β β
πΉ) β
β)) |
18 | 12, 14, 17 | sylanbrc 417 |
. . . . . . . 8
β’ ((πΉ:πβΆβ β§ π β β) β (β β
πΉ) β (β
βpm β)) |
19 | | dvfpm 14243 |
. . . . . . . 8
β’
((β β πΉ) β (β βpm
β) β (β D (β β πΉ)):dom (β D (β β πΉ))βΆβ) |
20 | 18, 19 | syl 14 |
. . . . . . 7
β’ ((πΉ:πβΆβ β§ π β β) β (β D
(β β πΉ)):dom
(β D (β β πΉ))βΆβ) |
21 | 20 | ffund 5371 |
. . . . . 6
β’ ((πΉ:πβΆβ β§ π β β) β Fun (β D
(β β πΉ))) |
22 | | funbrfv 5556 |
. . . . . 6
β’ (Fun
(β D (β β πΉ)) β (π₯(β D (β β πΉ))(ββ((β D
πΉ)βπ₯)) β ((β D (β β πΉ))βπ₯) = (ββ((β D πΉ)βπ₯)))) |
23 | 21, 22 | syl 14 |
. . . . 5
β’ ((πΉ:πβΆβ β§ π β β) β (π₯(β D (β β πΉ))(ββ((β D
πΉ)βπ₯)) β ((β D (β β πΉ))βπ₯) = (ββ((β D πΉ)βπ₯)))) |
24 | 23 | adantr 276 |
. . . 4
β’ (((πΉ:πβΆβ β§ π β β) β§ π₯ β dom (β D πΉ)) β (π₯(β D (β β πΉ))(ββ((β D
πΉ)βπ₯)) β ((β D (β β πΉ))βπ₯) = (ββ((β D πΉ)βπ₯)))) |
25 | 4, 24 | mpd 13 |
. . 3
β’ (((πΉ:πβΆβ β§ π β β) β§ π₯ β dom (β D πΉ)) β ((β D (β β
πΉ))βπ₯) = (ββ((β D
πΉ)βπ₯))) |
26 | 25 | mpteq2dva 4095 |
. 2
β’ ((πΉ:πβΆβ β§ π β β) β (π₯ β dom (β D πΉ) β¦ ((β D (β β
πΉ))βπ₯)) = (π₯ β dom (β D πΉ) β¦ (ββ((β D πΉ)βπ₯)))) |
27 | | vex 2742 |
. . . . . . . . . 10
β’ π₯ β V |
28 | 20 | ffvelcdmda 5653 |
. . . . . . . . . . 11
β’ (((πΉ:πβΆβ β§ π β β) β§ π₯ β dom (β D (β β
πΉ))) β ((β D
(β β πΉ))βπ₯) β β) |
29 | 28 | cjcld 10951 |
. . . . . . . . . 10
β’ (((πΉ:πβΆβ β§ π β β) β§ π₯ β dom (β D (β β
πΉ))) β
(ββ((β D (β β πΉ))βπ₯)) β β) |
30 | 7 | ad2antrr 488 |
. . . . . . . . . . 11
β’ (((πΉ:πβΆβ β§ π β β) β§ π₯ β dom (β D (β β
πΉ))) β (β
β πΉ):πβΆβ) |
31 | | simplr 528 |
. . . . . . . . . . 11
β’ (((πΉ:πβΆβ β§ π β β) β§ π₯ β dom (β D (β β
πΉ))) β π β
β) |
32 | | simpr 110 |
. . . . . . . . . . 11
β’ (((πΉ:πβΆβ β§ π β β) β§ π₯ β dom (β D (β β
πΉ))) β π₯ β dom (β D (β
β πΉ))) |
33 | 30, 31, 32 | dvcjbr 14257 |
. . . . . . . . . 10
β’ (((πΉ:πβΆβ β§ π β β) β§ π₯ β dom (β D (β β
πΉ))) β π₯(β D (β β
(β β πΉ)))(ββ((β D (β
β πΉ))βπ₯))) |
34 | | breldmg 4835 |
. . . . . . . . . 10
β’ ((π₯ β V β§
(ββ((β D (β β πΉ))βπ₯)) β β β§ π₯(β D (β β (β
β πΉ)))(ββ((β D (β
β πΉ))βπ₯))) β π₯ β dom (β D (β β
(β β πΉ)))) |
35 | 27, 29, 33, 34 | mp3an2i 1342 |
. . . . . . . . 9
β’ (((πΉ:πβΆβ β§ π β β) β§ π₯ β dom (β D (β β
πΉ))) β π₯ β dom (β D (β
β (β β πΉ)))) |
36 | 35 | ex 115 |
. . . . . . . 8
β’ ((πΉ:πβΆβ β§ π β β) β (π₯ β dom (β D (β β
πΉ)) β π₯ β dom (β D (β
β (β β πΉ))))) |
37 | 36 | ssrdv 3163 |
. . . . . . 7
β’ ((πΉ:πβΆβ β§ π β β) β dom (β D
(β β πΉ))
β dom (β D (β β (β β πΉ)))) |
38 | | ffvelcdm 5651 |
. . . . . . . . . . . . 13
β’ ((πΉ:πβΆβ β§ π₯ β π) β (πΉβπ₯) β β) |
39 | 38 | adantlr 477 |
. . . . . . . . . . . 12
β’ (((πΉ:πβΆβ β§ π β β) β§ π₯ β π) β (πΉβπ₯) β β) |
40 | 39 | cjcjd 10954 |
. . . . . . . . . . 11
β’ (((πΉ:πβΆβ β§ π β β) β§ π₯ β π) β
(ββ(ββ(πΉβπ₯))) = (πΉβπ₯)) |
41 | 40 | mpteq2dva 4095 |
. . . . . . . . . 10
β’ ((πΉ:πβΆβ β§ π β β) β (π₯ β π β¦
(ββ(ββ(πΉβπ₯)))) = (π₯ β π β¦ (πΉβπ₯))) |
42 | 39 | cjcld 10951 |
. . . . . . . . . . 11
β’ (((πΉ:πβΆβ β§ π β β) β§ π₯ β π) β (ββ(πΉβπ₯)) β β) |
43 | | simpl 109 |
. . . . . . . . . . . . 13
β’ ((πΉ:πβΆβ β§ π β β) β πΉ:πβΆβ) |
44 | 43 | feqmptd 5571 |
. . . . . . . . . . . 12
β’ ((πΉ:πβΆβ β§ π β β) β πΉ = (π₯ β π β¦ (πΉβπ₯))) |
45 | 5 | a1i 9 |
. . . . . . . . . . . . 13
β’ ((πΉ:πβΆβ β§ π β β) β
β:ββΆβ) |
46 | 45 | feqmptd 5571 |
. . . . . . . . . . . 12
β’ ((πΉ:πβΆβ β§ π β β) β β = (π¦ β β β¦
(ββπ¦))) |
47 | | fveq2 5517 |
. . . . . . . . . . . 12
β’ (π¦ = (πΉβπ₯) β (ββπ¦) = (ββ(πΉβπ₯))) |
48 | 39, 44, 46, 47 | fmptco 5684 |
. . . . . . . . . . 11
β’ ((πΉ:πβΆβ β§ π β β) β (β β
πΉ) = (π₯ β π β¦ (ββ(πΉβπ₯)))) |
49 | | fveq2 5517 |
. . . . . . . . . . 11
β’ (π¦ = (ββ(πΉβπ₯)) β (ββπ¦) = (ββ(ββ(πΉβπ₯)))) |
50 | 42, 48, 46, 49 | fmptco 5684 |
. . . . . . . . . 10
β’ ((πΉ:πβΆβ β§ π β β) β (β β
(β β πΉ)) =
(π₯ β π β¦
(ββ(ββ(πΉβπ₯))))) |
51 | 41, 50, 44 | 3eqtr4d 2220 |
. . . . . . . . 9
β’ ((πΉ:πβΆβ β§ π β β) β (β β
(β β πΉ)) =
πΉ) |
52 | 51 | oveq2d 5893 |
. . . . . . . 8
β’ ((πΉ:πβΆβ β§ π β β) β (β D
(β β (β β πΉ))) = (β D πΉ)) |
53 | 52 | dmeqd 4831 |
. . . . . . 7
β’ ((πΉ:πβΆβ β§ π β β) β dom (β D
(β β (β β πΉ))) = dom (β D πΉ)) |
54 | 37, 53 | sseqtrd 3195 |
. . . . . 6
β’ ((πΉ:πβΆβ β§ π β β) β dom (β D
(β β πΉ))
β dom (β D πΉ)) |
55 | | ffdm 5388 |
. . . . . . . . . . . . 13
β’ (πΉ:πβΆβ β (πΉ:dom πΉβΆβ β§ dom πΉ β π)) |
56 | 55 | simpld 112 |
. . . . . . . . . . . 12
β’ (πΉ:πβΆβ β πΉ:dom πΉβΆβ) |
57 | 56 | adantr 276 |
. . . . . . . . . . 11
β’ ((πΉ:πβΆβ β§ π β β) β πΉ:dom πΉβΆβ) |
58 | | fdm 5373 |
. . . . . . . . . . . . 13
β’ (πΉ:πβΆβ β dom πΉ = π) |
59 | 58 | adantr 276 |
. . . . . . . . . . . 12
β’ ((πΉ:πβΆβ β§ π β β) β dom πΉ = π) |
60 | 59, 13 | eqsstrd 3193 |
. . . . . . . . . . 11
β’ ((πΉ:πβΆβ β§ π β β) β dom πΉ β
β) |
61 | 15, 16 | elpm2 6682 |
. . . . . . . . . . 11
β’ (πΉ β (β
βpm β) β (πΉ:dom πΉβΆβ β§ dom πΉ β β)) |
62 | 57, 60, 61 | sylanbrc 417 |
. . . . . . . . . 10
β’ ((πΉ:πβΆβ β§ π β β) β πΉ β (β βpm
β)) |
63 | | dvfpm 14243 |
. . . . . . . . . 10
β’ (πΉ β (β
βpm β) β (β D πΉ):dom (β D πΉ)βΆβ) |
64 | 62, 63 | syl 14 |
. . . . . . . . 9
β’ ((πΉ:πβΆβ β§ π β β) β (β D πΉ):dom (β D πΉ)βΆβ) |
65 | 64 | ffvelcdmda 5653 |
. . . . . . . 8
β’ (((πΉ:πβΆβ β§ π β β) β§ π₯ β dom (β D πΉ)) β ((β D πΉ)βπ₯) β β) |
66 | 65 | cjcld 10951 |
. . . . . . 7
β’ (((πΉ:πβΆβ β§ π β β) β§ π₯ β dom (β D πΉ)) β (ββ((β D πΉ)βπ₯)) β β) |
67 | | breldmg 4835 |
. . . . . . 7
β’ ((π₯ β V β§
(ββ((β D πΉ)βπ₯)) β β β§ π₯(β D (β β πΉ))(ββ((β D
πΉ)βπ₯))) β π₯ β dom (β D (β β
πΉ))) |
68 | 27, 66, 4, 67 | mp3an2i 1342 |
. . . . . 6
β’ (((πΉ:πβΆβ β§ π β β) β§ π₯ β dom (β D πΉ)) β π₯ β dom (β D (β β
πΉ))) |
69 | 54, 68 | eqelssd 3176 |
. . . . 5
β’ ((πΉ:πβΆβ β§ π β β) β dom (β D
(β β πΉ)) = dom
(β D πΉ)) |
70 | 69 | feq2d 5355 |
. . . 4
β’ ((πΉ:πβΆβ β§ π β β) β ((β D
(β β πΉ)):dom
(β D (β β πΉ))βΆβ β (β D
(β β πΉ)):dom
(β D πΉ)βΆβ)) |
71 | 20, 70 | mpbid 147 |
. . 3
β’ ((πΉ:πβΆβ β§ π β β) β (β D
(β β πΉ)):dom
(β D πΉ)βΆβ) |
72 | 71 | feqmptd 5571 |
. 2
β’ ((πΉ:πβΆβ β§ π β β) β (β D
(β β πΉ)) =
(π₯ β dom (β D
πΉ) β¦ ((β D
(β β πΉ))βπ₯))) |
73 | 64 | feqmptd 5571 |
. . 3
β’ ((πΉ:πβΆβ β§ π β β) β (β D πΉ) = (π₯ β dom (β D πΉ) β¦ ((β D πΉ)βπ₯))) |
74 | | fveq2 5517 |
. . 3
β’ (π¦ = ((β D πΉ)βπ₯) β (ββπ¦) = (ββ((β D πΉ)βπ₯))) |
75 | 65, 73, 46, 74 | fmptco 5684 |
. 2
β’ ((πΉ:πβΆβ β§ π β β) β (β β
(β D πΉ)) = (π₯ β dom (β D πΉ) β¦
(ββ((β D πΉ)βπ₯)))) |
76 | 26, 72, 75 | 3eqtr4d 2220 |
1
β’ ((πΉ:πβΆβ β§ π β β) β (β D
(β β πΉ)) =
(β β (β D πΉ))) |