ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcj GIF version

Theorem dvcj 12842
Description: The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr 12841. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvcj ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹)))

Proof of Theorem dvcj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 518 . . . . 5 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝐹:𝑋⟶ℂ)
2 simplr 519 . . . . 5 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑋 ⊆ ℝ)
3 simpr 109 . . . . 5 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥 ∈ dom (ℝ D 𝐹))
41, 2, 3dvcjbr 12841 . . . 4 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝑥)))
5 cjf 10619 . . . . . . . . . . . 12 ∗:ℂ⟶ℂ
6 fco 5288 . . . . . . . . . . . 12 ((∗:ℂ⟶ℂ ∧ 𝐹:𝑋⟶ℂ) → (∗ ∘ 𝐹):𝑋⟶ℂ)
75, 6mpan 420 . . . . . . . . . . 11 (𝐹:𝑋⟶ℂ → (∗ ∘ 𝐹):𝑋⟶ℂ)
87adantr 274 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ 𝐹):𝑋⟶ℂ)
97fdmd 5279 . . . . . . . . . . . 12 (𝐹:𝑋⟶ℂ → dom (∗ ∘ 𝐹) = 𝑋)
109adantr 274 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (∗ ∘ 𝐹) = 𝑋)
1110feq2d 5260 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ((∗ ∘ 𝐹):dom (∗ ∘ 𝐹)⟶ℂ ↔ (∗ ∘ 𝐹):𝑋⟶ℂ))
128, 11mpbird 166 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ 𝐹):dom (∗ ∘ 𝐹)⟶ℂ)
13 simpr 109 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝑋 ⊆ ℝ)
1410, 13eqsstrd 3133 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (∗ ∘ 𝐹) ⊆ ℝ)
15 cnex 7744 . . . . . . . . . 10 ℂ ∈ V
16 reex 7754 . . . . . . . . . 10 ℝ ∈ V
1715, 16elpm2 6574 . . . . . . . . 9 ((∗ ∘ 𝐹) ∈ (ℂ ↑pm ℝ) ↔ ((∗ ∘ 𝐹):dom (∗ ∘ 𝐹)⟶ℂ ∧ dom (∗ ∘ 𝐹) ⊆ ℝ))
1812, 14, 17sylanbrc 413 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ 𝐹) ∈ (ℂ ↑pm ℝ))
19 dvfpm 12827 . . . . . . . 8 ((∗ ∘ 𝐹) ∈ (ℂ ↑pm ℝ) → (ℝ D (∗ ∘ 𝐹)):dom (ℝ D (∗ ∘ 𝐹))⟶ℂ)
2018, 19syl 14 . . . . . . 7 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)):dom (ℝ D (∗ ∘ 𝐹))⟶ℂ)
2120ffund 5276 . . . . . 6 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → Fun (ℝ D (∗ ∘ 𝐹)))
22 funbrfv 5460 . . . . . 6 (Fun (ℝ D (∗ ∘ 𝐹)) → (𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝑥)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥))))
2321, 22syl 14 . . . . 5 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝑥)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥))))
2423adantr 274 . . . 4 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → (𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝑥)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥))))
254, 24mpd 13 . . 3 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥)))
2625mpteq2dva 4018 . 2 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥 ∈ dom (ℝ D 𝐹) ↦ ((ℝ D (∗ ∘ 𝐹))‘𝑥)) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ (∗‘((ℝ D 𝐹)‘𝑥))))
27 vex 2689 . . . . . . . . . 10 𝑥 ∈ V
2820ffvelrnda 5555 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) ∈ ℂ)
2928cjcld 10712 . . . . . . . . . 10 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → (∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥)) ∈ ℂ)
307ad2antrr 479 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → (∗ ∘ 𝐹):𝑋⟶ℂ)
31 simplr 519 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → 𝑋 ⊆ ℝ)
32 simpr 109 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹)))
3330, 31, 32dvcjbr 12841 . . . . . . . . . 10 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → 𝑥(ℝ D (∗ ∘ (∗ ∘ 𝐹)))(∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥)))
34 breldmg 4745 . . . . . . . . . 10 ((𝑥 ∈ V ∧ (∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥)) ∈ ℂ ∧ 𝑥(ℝ D (∗ ∘ (∗ ∘ 𝐹)))(∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥))) → 𝑥 ∈ dom (ℝ D (∗ ∘ (∗ ∘ 𝐹))))
3527, 29, 33, 34mp3an2i 1320 . . . . . . . . 9 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → 𝑥 ∈ dom (ℝ D (∗ ∘ (∗ ∘ 𝐹))))
3635ex 114 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹)) → 𝑥 ∈ dom (ℝ D (∗ ∘ (∗ ∘ 𝐹)))))
3736ssrdv 3103 . . . . . . 7 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D (∗ ∘ 𝐹)) ⊆ dom (ℝ D (∗ ∘ (∗ ∘ 𝐹))))
38 ffvelrn 5553 . . . . . . . . . . . . 13 ((𝐹:𝑋⟶ℂ ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
3938adantlr 468 . . . . . . . . . . . 12 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
4039cjcjd 10715 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥𝑋) → (∗‘(∗‘(𝐹𝑥))) = (𝐹𝑥))
4140mpteq2dva 4018 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥𝑋 ↦ (∗‘(∗‘(𝐹𝑥)))) = (𝑥𝑋 ↦ (𝐹𝑥)))
4239cjcld 10712 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥𝑋) → (∗‘(𝐹𝑥)) ∈ ℂ)
43 simpl 108 . . . . . . . . . . . . 13 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:𝑋⟶ℂ)
4443feqmptd 5474 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
455a1i 9 . . . . . . . . . . . . 13 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ∗:ℂ⟶ℂ)
4645feqmptd 5474 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ∗ = (𝑦 ∈ ℂ ↦ (∗‘𝑦)))
47 fveq2 5421 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑥) → (∗‘𝑦) = (∗‘(𝐹𝑥)))
4839, 44, 46, 47fmptco 5586 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ 𝐹) = (𝑥𝑋 ↦ (∗‘(𝐹𝑥))))
49 fveq2 5421 . . . . . . . . . . 11 (𝑦 = (∗‘(𝐹𝑥)) → (∗‘𝑦) = (∗‘(∗‘(𝐹𝑥))))
5042, 48, 46, 49fmptco 5586 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ (∗ ∘ 𝐹)) = (𝑥𝑋 ↦ (∗‘(∗‘(𝐹𝑥)))))
5141, 50, 443eqtr4d 2182 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ (∗ ∘ 𝐹)) = 𝐹)
5251oveq2d 5790 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ (∗ ∘ 𝐹))) = (ℝ D 𝐹))
5352dmeqd 4741 . . . . . . 7 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D (∗ ∘ (∗ ∘ 𝐹))) = dom (ℝ D 𝐹))
5437, 53sseqtrd 3135 . . . . . 6 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D (∗ ∘ 𝐹)) ⊆ dom (ℝ D 𝐹))
55 ffdm 5293 . . . . . . . . . . . . 13 (𝐹:𝑋⟶ℂ → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑋))
5655simpld 111 . . . . . . . . . . . 12 (𝐹:𝑋⟶ℂ → 𝐹:dom 𝐹⟶ℂ)
5756adantr 274 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:dom 𝐹⟶ℂ)
58 fdm 5278 . . . . . . . . . . . . 13 (𝐹:𝑋⟶ℂ → dom 𝐹 = 𝑋)
5958adantr 274 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom 𝐹 = 𝑋)
6059, 13eqsstrd 3133 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom 𝐹 ⊆ ℝ)
6115, 16elpm2 6574 . . . . . . . . . . 11 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
6257, 60, 61sylanbrc 413 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
63 dvfpm 12827 . . . . . . . . . 10 (𝐹 ∈ (ℂ ↑pm ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
6462, 63syl 14 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
6564ffvelrnda 5555 . . . . . . . 8 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
6665cjcld 10712 . . . . . . 7 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → (∗‘((ℝ D 𝐹)‘𝑥)) ∈ ℂ)
67 breldmg 4745 . . . . . . 7 ((𝑥 ∈ V ∧ (∗‘((ℝ D 𝐹)‘𝑥)) ∈ ℂ ∧ 𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝑥))) → 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹)))
6827, 66, 4, 67mp3an2i 1320 . . . . . 6 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹)))
6954, 68eqelssd 3116 . . . . 5 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D (∗ ∘ 𝐹)) = dom (ℝ D 𝐹))
7069feq2d 5260 . . . 4 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ((ℝ D (∗ ∘ 𝐹)):dom (ℝ D (∗ ∘ 𝐹))⟶ℂ ↔ (ℝ D (∗ ∘ 𝐹)):dom (ℝ D 𝐹)⟶ℂ))
7120, 70mpbid 146 . . 3 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)):dom (ℝ D 𝐹)⟶ℂ)
7271feqmptd 5474 . 2 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ ((ℝ D (∗ ∘ 𝐹))‘𝑥)))
7364feqmptd 5474 . . 3 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ ((ℝ D 𝐹)‘𝑥)))
74 fveq2 5421 . . 3 (𝑦 = ((ℝ D 𝐹)‘𝑥) → (∗‘𝑦) = (∗‘((ℝ D 𝐹)‘𝑥)))
7565, 73, 46, 74fmptco 5586 . 2 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ (ℝ D 𝐹)) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ (∗‘((ℝ D 𝐹)‘𝑥))))
7626, 72, 753eqtr4d 2182 1 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  Vcvv 2686  wss 3071   class class class wbr 3929  cmpt 3989  dom cdm 4539  ccom 4543  Fun wfun 5117  wf 5119  cfv 5123  (class class class)co 5774  pm cpm 6543  cc 7618  cr 7619  ccj 10611   D cdv 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pm 6545  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-ioo 9675  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-ntr 12265  df-cn 12357  df-cnp 12358  df-cncf 12727  df-limced 12794  df-dvap 12795
This theorem is referenced by:  dvfre  12843
  Copyright terms: Public domain W3C validator