| Step | Hyp | Ref
| Expression |
| 1 | | simpll 527 |
. . . . 5
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝐹:𝑋⟶ℂ) |
| 2 | | simplr 528 |
. . . . 5
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑋 ⊆ ℝ) |
| 3 | | simpr 110 |
. . . . 5
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥 ∈ dom (ℝ D 𝐹)) |
| 4 | 1, 2, 3 | dvcjbr 15028 |
. . . 4
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D
𝐹)‘𝑥))) |
| 5 | | cjf 11029 |
. . . . . . . . . . . 12
⊢
∗:ℂ⟶ℂ |
| 6 | | fco 5426 |
. . . . . . . . . . . 12
⊢
((∗:ℂ⟶ℂ ∧ 𝐹:𝑋⟶ℂ) → (∗ ∘
𝐹):𝑋⟶ℂ) |
| 7 | 5, 6 | mpan 424 |
. . . . . . . . . . 11
⊢ (𝐹:𝑋⟶ℂ → (∗ ∘
𝐹):𝑋⟶ℂ) |
| 8 | 7 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘
𝐹):𝑋⟶ℂ) |
| 9 | 7 | fdmd 5417 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋⟶ℂ → dom (∗ ∘
𝐹) = 𝑋) |
| 10 | 9 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (∗
∘ 𝐹) = 𝑋) |
| 11 | 10 | feq2d 5398 |
. . . . . . . . . 10
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ((∗ ∘
𝐹):dom (∗ ∘
𝐹)⟶ℂ ↔
(∗ ∘ 𝐹):𝑋⟶ℂ)) |
| 12 | 8, 11 | mpbird 167 |
. . . . . . . . 9
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘
𝐹):dom (∗ ∘
𝐹)⟶ℂ) |
| 13 | | simpr 110 |
. . . . . . . . . 10
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝑋 ⊆ ℝ) |
| 14 | 10, 13 | eqsstrd 3220 |
. . . . . . . . 9
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (∗
∘ 𝐹) ⊆
ℝ) |
| 15 | | cnex 8020 |
. . . . . . . . . 10
⊢ ℂ
∈ V |
| 16 | | reex 8030 |
. . . . . . . . . 10
⊢ ℝ
∈ V |
| 17 | 15, 16 | elpm2 6748 |
. . . . . . . . 9
⊢
((∗ ∘ 𝐹) ∈ (ℂ ↑pm
ℝ) ↔ ((∗ ∘ 𝐹):dom (∗ ∘ 𝐹)⟶ℂ ∧ dom (∗ ∘
𝐹) ⊆
ℝ)) |
| 18 | 12, 14, 17 | sylanbrc 417 |
. . . . . . . 8
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘
𝐹) ∈ (ℂ
↑pm ℝ)) |
| 19 | | dvfpm 15009 |
. . . . . . . 8
⊢
((∗ ∘ 𝐹) ∈ (ℂ ↑pm
ℝ) → (ℝ D (∗ ∘ 𝐹)):dom (ℝ D (∗ ∘ 𝐹))⟶ℂ) |
| 20 | 18, 19 | syl 14 |
. . . . . . 7
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D
(∗ ∘ 𝐹)):dom
(ℝ D (∗ ∘ 𝐹))⟶ℂ) |
| 21 | 20 | ffund 5414 |
. . . . . 6
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → Fun (ℝ D
(∗ ∘ 𝐹))) |
| 22 | | funbrfv 5602 |
. . . . . 6
⊢ (Fun
(ℝ D (∗ ∘ 𝐹)) → (𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D
𝐹)‘𝑥)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥)))) |
| 23 | 21, 22 | syl 14 |
. . . . 5
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D
𝐹)‘𝑥)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥)))) |
| 24 | 23 | adantr 276 |
. . . 4
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → (𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D
𝐹)‘𝑥)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥)))) |
| 25 | 4, 24 | mpd 13 |
. . 3
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D (∗ ∘
𝐹))‘𝑥) = (∗‘((ℝ D
𝐹)‘𝑥))) |
| 26 | 25 | mpteq2dva 4124 |
. 2
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥 ∈ dom (ℝ D 𝐹) ↦ ((ℝ D (∗ ∘
𝐹))‘𝑥)) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ (∗‘((ℝ D 𝐹)‘𝑥)))) |
| 27 | | vex 2766 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 28 | 20 | ffvelcdmda 5700 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) → ((ℝ D
(∗ ∘ 𝐹))‘𝑥) ∈ ℂ) |
| 29 | 28 | cjcld 11122 |
. . . . . . . . . 10
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) →
(∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥)) ∈ ℂ) |
| 30 | 7 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) → (∗
∘ 𝐹):𝑋⟶ℂ) |
| 31 | | simplr 528 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) → 𝑋 ⊆
ℝ) |
| 32 | | simpr 110 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) → 𝑥 ∈ dom (ℝ D (∗
∘ 𝐹))) |
| 33 | 30, 31, 32 | dvcjbr 15028 |
. . . . . . . . . 10
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) → 𝑥(ℝ D (∗ ∘
(∗ ∘ 𝐹)))(∗‘((ℝ D (∗
∘ 𝐹))‘𝑥))) |
| 34 | | breldmg 4873 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ V ∧
(∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥)) ∈ ℂ ∧ 𝑥(ℝ D (∗ ∘ (∗
∘ 𝐹)))(∗‘((ℝ D (∗
∘ 𝐹))‘𝑥))) → 𝑥 ∈ dom (ℝ D (∗ ∘
(∗ ∘ 𝐹)))) |
| 35 | 27, 29, 33, 34 | mp3an2i 1353 |
. . . . . . . . 9
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) → 𝑥 ∈ dom (ℝ D (∗
∘ (∗ ∘ 𝐹)))) |
| 36 | 35 | ex 115 |
. . . . . . . 8
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥 ∈ dom (ℝ D (∗ ∘
𝐹)) → 𝑥 ∈ dom (ℝ D (∗
∘ (∗ ∘ 𝐹))))) |
| 37 | 36 | ssrdv 3190 |
. . . . . . 7
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D
(∗ ∘ 𝐹))
⊆ dom (ℝ D (∗ ∘ (∗ ∘ 𝐹)))) |
| 38 | | ffvelcdm 5698 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℂ) |
| 39 | 38 | adantlr 477 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℂ) |
| 40 | 39 | cjcjd 11125 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ 𝑋) →
(∗‘(∗‘(𝐹‘𝑥))) = (𝐹‘𝑥)) |
| 41 | 40 | mpteq2dva 4124 |
. . . . . . . . . 10
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥 ∈ 𝑋 ↦
(∗‘(∗‘(𝐹‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
| 42 | 39 | cjcld 11122 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ 𝑋) → (∗‘(𝐹‘𝑥)) ∈ ℂ) |
| 43 | | simpl 109 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:𝑋⟶ℂ) |
| 44 | 43 | feqmptd 5617 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
| 45 | 5 | a1i 9 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) →
∗:ℂ⟶ℂ) |
| 46 | 45 | feqmptd 5617 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ∗ = (𝑦 ∈ ℂ ↦
(∗‘𝑦))) |
| 47 | | fveq2 5561 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐹‘𝑥) → (∗‘𝑦) = (∗‘(𝐹‘𝑥))) |
| 48 | 39, 44, 46, 47 | fmptco 5731 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘
𝐹) = (𝑥 ∈ 𝑋 ↦ (∗‘(𝐹‘𝑥)))) |
| 49 | | fveq2 5561 |
. . . . . . . . . . 11
⊢ (𝑦 = (∗‘(𝐹‘𝑥)) → (∗‘𝑦) = (∗‘(∗‘(𝐹‘𝑥)))) |
| 50 | 42, 48, 46, 49 | fmptco 5731 |
. . . . . . . . . 10
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘
(∗ ∘ 𝐹)) =
(𝑥 ∈ 𝑋 ↦
(∗‘(∗‘(𝐹‘𝑥))))) |
| 51 | 41, 50, 44 | 3eqtr4d 2239 |
. . . . . . . . 9
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘
(∗ ∘ 𝐹)) =
𝐹) |
| 52 | 51 | oveq2d 5941 |
. . . . . . . 8
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D
(∗ ∘ (∗ ∘ 𝐹))) = (ℝ D 𝐹)) |
| 53 | 52 | dmeqd 4869 |
. . . . . . 7
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D
(∗ ∘ (∗ ∘ 𝐹))) = dom (ℝ D 𝐹)) |
| 54 | 37, 53 | sseqtrd 3222 |
. . . . . 6
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D
(∗ ∘ 𝐹))
⊆ dom (ℝ D 𝐹)) |
| 55 | | ffdm 5431 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑋⟶ℂ → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ 𝑋)) |
| 56 | 55 | simpld 112 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋⟶ℂ → 𝐹:dom 𝐹⟶ℂ) |
| 57 | 56 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:dom 𝐹⟶ℂ) |
| 58 | | fdm 5416 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑋⟶ℂ → dom 𝐹 = 𝑋) |
| 59 | 58 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom 𝐹 = 𝑋) |
| 60 | 59, 13 | eqsstrd 3220 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom 𝐹 ⊆
ℝ) |
| 61 | 15, 16 | elpm2 6748 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (ℂ
↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
| 62 | 57, 60, 61 | sylanbrc 417 |
. . . . . . . . . 10
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
| 63 | | dvfpm 15009 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (ℂ
↑pm ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ) |
| 64 | 62, 63 | syl 14 |
. . . . . . . . 9
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ) |
| 65 | 64 | ffvelcdmda 5700 |
. . . . . . . 8
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
| 66 | 65 | cjcld 11122 |
. . . . . . 7
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → (∗‘((ℝ D 𝐹)‘𝑥)) ∈ ℂ) |
| 67 | | breldmg 4873 |
. . . . . . 7
⊢ ((𝑥 ∈ V ∧
(∗‘((ℝ D 𝐹)‘𝑥)) ∈ ℂ ∧ 𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D
𝐹)‘𝑥))) → 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) |
| 68 | 27, 66, 4, 67 | mp3an2i 1353 |
. . . . . 6
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) |
| 69 | 54, 68 | eqelssd 3203 |
. . . . 5
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D
(∗ ∘ 𝐹)) = dom
(ℝ D 𝐹)) |
| 70 | 69 | feq2d 5398 |
. . . 4
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ((ℝ D
(∗ ∘ 𝐹)):dom
(ℝ D (∗ ∘ 𝐹))⟶ℂ ↔ (ℝ D
(∗ ∘ 𝐹)):dom
(ℝ D 𝐹)⟶ℂ)) |
| 71 | 20, 70 | mpbid 147 |
. . 3
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D
(∗ ∘ 𝐹)):dom
(ℝ D 𝐹)⟶ℂ) |
| 72 | 71 | feqmptd 5617 |
. 2
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D
(∗ ∘ 𝐹)) =
(𝑥 ∈ dom (ℝ D
𝐹) ↦ ((ℝ D
(∗ ∘ 𝐹))‘𝑥))) |
| 73 | 64 | feqmptd 5617 |
. . 3
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ ((ℝ D 𝐹)‘𝑥))) |
| 74 | | fveq2 5561 |
. . 3
⊢ (𝑦 = ((ℝ D 𝐹)‘𝑥) → (∗‘𝑦) = (∗‘((ℝ D 𝐹)‘𝑥))) |
| 75 | 65, 73, 46, 74 | fmptco 5731 |
. 2
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘
(ℝ D 𝐹)) = (𝑥 ∈ dom (ℝ D 𝐹) ↦
(∗‘((ℝ D 𝐹)‘𝑥)))) |
| 76 | 26, 72, 75 | 3eqtr4d 2239 |
1
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D
(∗ ∘ 𝐹)) =
(∗ ∘ (ℝ D 𝐹))) |