Step | Hyp | Ref
| Expression |
1 | | simpll 519 |
. . . . 5
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝐹:𝑋⟶ℂ) |
2 | | simplr 520 |
. . . . 5
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑋 ⊆ ℝ) |
3 | | simpr 109 |
. . . . 5
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥 ∈ dom (ℝ D 𝐹)) |
4 | 1, 2, 3 | dvcjbr 13011 |
. . . 4
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D
𝐹)‘𝑥))) |
5 | | cjf 10724 |
. . . . . . . . . . . 12
⊢
∗:ℂ⟶ℂ |
6 | | fco 5328 |
. . . . . . . . . . . 12
⊢
((∗:ℂ⟶ℂ ∧ 𝐹:𝑋⟶ℂ) → (∗ ∘
𝐹):𝑋⟶ℂ) |
7 | 5, 6 | mpan 421 |
. . . . . . . . . . 11
⊢ (𝐹:𝑋⟶ℂ → (∗ ∘
𝐹):𝑋⟶ℂ) |
8 | 7 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘
𝐹):𝑋⟶ℂ) |
9 | 7 | fdmd 5319 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋⟶ℂ → dom (∗ ∘
𝐹) = 𝑋) |
10 | 9 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (∗
∘ 𝐹) = 𝑋) |
11 | 10 | feq2d 5300 |
. . . . . . . . . 10
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ((∗ ∘
𝐹):dom (∗ ∘
𝐹)⟶ℂ ↔
(∗ ∘ 𝐹):𝑋⟶ℂ)) |
12 | 8, 11 | mpbird 166 |
. . . . . . . . 9
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘
𝐹):dom (∗ ∘
𝐹)⟶ℂ) |
13 | | simpr 109 |
. . . . . . . . . 10
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝑋 ⊆ ℝ) |
14 | 10, 13 | eqsstrd 3160 |
. . . . . . . . 9
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (∗
∘ 𝐹) ⊆
ℝ) |
15 | | cnex 7835 |
. . . . . . . . . 10
⊢ ℂ
∈ V |
16 | | reex 7845 |
. . . . . . . . . 10
⊢ ℝ
∈ V |
17 | 15, 16 | elpm2 6614 |
. . . . . . . . 9
⊢
((∗ ∘ 𝐹) ∈ (ℂ ↑pm
ℝ) ↔ ((∗ ∘ 𝐹):dom (∗ ∘ 𝐹)⟶ℂ ∧ dom (∗ ∘
𝐹) ⊆
ℝ)) |
18 | 12, 14, 17 | sylanbrc 414 |
. . . . . . . 8
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘
𝐹) ∈ (ℂ
↑pm ℝ)) |
19 | | dvfpm 12997 |
. . . . . . . 8
⊢
((∗ ∘ 𝐹) ∈ (ℂ ↑pm
ℝ) → (ℝ D (∗ ∘ 𝐹)):dom (ℝ D (∗ ∘ 𝐹))⟶ℂ) |
20 | 18, 19 | syl 14 |
. . . . . . 7
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D
(∗ ∘ 𝐹)):dom
(ℝ D (∗ ∘ 𝐹))⟶ℂ) |
21 | 20 | ffund 5316 |
. . . . . 6
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → Fun (ℝ D
(∗ ∘ 𝐹))) |
22 | | funbrfv 5500 |
. . . . . 6
⊢ (Fun
(ℝ D (∗ ∘ 𝐹)) → (𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D
𝐹)‘𝑥)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥)))) |
23 | 21, 22 | syl 14 |
. . . . 5
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D
𝐹)‘𝑥)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥)))) |
24 | 23 | adantr 274 |
. . . 4
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → (𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D
𝐹)‘𝑥)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥)))) |
25 | 4, 24 | mpd 13 |
. . 3
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D (∗ ∘
𝐹))‘𝑥) = (∗‘((ℝ D
𝐹)‘𝑥))) |
26 | 25 | mpteq2dva 4050 |
. 2
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥 ∈ dom (ℝ D 𝐹) ↦ ((ℝ D (∗ ∘
𝐹))‘𝑥)) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ (∗‘((ℝ D 𝐹)‘𝑥)))) |
27 | | vex 2712 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
28 | 20 | ffvelrnda 5595 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) → ((ℝ D
(∗ ∘ 𝐹))‘𝑥) ∈ ℂ) |
29 | 28 | cjcld 10817 |
. . . . . . . . . 10
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) →
(∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥)) ∈ ℂ) |
30 | 7 | ad2antrr 480 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) → (∗
∘ 𝐹):𝑋⟶ℂ) |
31 | | simplr 520 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) → 𝑋 ⊆
ℝ) |
32 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) → 𝑥 ∈ dom (ℝ D (∗
∘ 𝐹))) |
33 | 30, 31, 32 | dvcjbr 13011 |
. . . . . . . . . 10
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) → 𝑥(ℝ D (∗ ∘
(∗ ∘ 𝐹)))(∗‘((ℝ D (∗
∘ 𝐹))‘𝑥))) |
34 | | breldmg 4785 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ V ∧
(∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥)) ∈ ℂ ∧ 𝑥(ℝ D (∗ ∘ (∗
∘ 𝐹)))(∗‘((ℝ D (∗
∘ 𝐹))‘𝑥))) → 𝑥 ∈ dom (ℝ D (∗ ∘
(∗ ∘ 𝐹)))) |
35 | 27, 29, 33, 34 | mp3an2i 1321 |
. . . . . . . . 9
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) → 𝑥 ∈ dom (ℝ D (∗
∘ (∗ ∘ 𝐹)))) |
36 | 35 | ex 114 |
. . . . . . . 8
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥 ∈ dom (ℝ D (∗ ∘
𝐹)) → 𝑥 ∈ dom (ℝ D (∗
∘ (∗ ∘ 𝐹))))) |
37 | 36 | ssrdv 3130 |
. . . . . . 7
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D
(∗ ∘ 𝐹))
⊆ dom (ℝ D (∗ ∘ (∗ ∘ 𝐹)))) |
38 | | ffvelrn 5593 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℂ) |
39 | 38 | adantlr 469 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℂ) |
40 | 39 | cjcjd 10820 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ 𝑋) →
(∗‘(∗‘(𝐹‘𝑥))) = (𝐹‘𝑥)) |
41 | 40 | mpteq2dva 4050 |
. . . . . . . . . 10
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥 ∈ 𝑋 ↦
(∗‘(∗‘(𝐹‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
42 | 39 | cjcld 10817 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ 𝑋) → (∗‘(𝐹‘𝑥)) ∈ ℂ) |
43 | | simpl 108 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:𝑋⟶ℂ) |
44 | 43 | feqmptd 5514 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
45 | 5 | a1i 9 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) →
∗:ℂ⟶ℂ) |
46 | 45 | feqmptd 5514 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ∗ = (𝑦 ∈ ℂ ↦
(∗‘𝑦))) |
47 | | fveq2 5461 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐹‘𝑥) → (∗‘𝑦) = (∗‘(𝐹‘𝑥))) |
48 | 39, 44, 46, 47 | fmptco 5626 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘
𝐹) = (𝑥 ∈ 𝑋 ↦ (∗‘(𝐹‘𝑥)))) |
49 | | fveq2 5461 |
. . . . . . . . . . 11
⊢ (𝑦 = (∗‘(𝐹‘𝑥)) → (∗‘𝑦) = (∗‘(∗‘(𝐹‘𝑥)))) |
50 | 42, 48, 46, 49 | fmptco 5626 |
. . . . . . . . . 10
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘
(∗ ∘ 𝐹)) =
(𝑥 ∈ 𝑋 ↦
(∗‘(∗‘(𝐹‘𝑥))))) |
51 | 41, 50, 44 | 3eqtr4d 2197 |
. . . . . . . . 9
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘
(∗ ∘ 𝐹)) =
𝐹) |
52 | 51 | oveq2d 5830 |
. . . . . . . 8
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D
(∗ ∘ (∗ ∘ 𝐹))) = (ℝ D 𝐹)) |
53 | 52 | dmeqd 4781 |
. . . . . . 7
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D
(∗ ∘ (∗ ∘ 𝐹))) = dom (ℝ D 𝐹)) |
54 | 37, 53 | sseqtrd 3162 |
. . . . . 6
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D
(∗ ∘ 𝐹))
⊆ dom (ℝ D 𝐹)) |
55 | | ffdm 5333 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑋⟶ℂ → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ 𝑋)) |
56 | 55 | simpld 111 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋⟶ℂ → 𝐹:dom 𝐹⟶ℂ) |
57 | 56 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:dom 𝐹⟶ℂ) |
58 | | fdm 5318 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑋⟶ℂ → dom 𝐹 = 𝑋) |
59 | 58 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom 𝐹 = 𝑋) |
60 | 59, 13 | eqsstrd 3160 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom 𝐹 ⊆
ℝ) |
61 | 15, 16 | elpm2 6614 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (ℂ
↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
62 | 57, 60, 61 | sylanbrc 414 |
. . . . . . . . . 10
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
63 | | dvfpm 12997 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (ℂ
↑pm ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ) |
64 | 62, 63 | syl 14 |
. . . . . . . . 9
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ) |
65 | 64 | ffvelrnda 5595 |
. . . . . . . 8
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
66 | 65 | cjcld 10817 |
. . . . . . 7
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → (∗‘((ℝ D 𝐹)‘𝑥)) ∈ ℂ) |
67 | | breldmg 4785 |
. . . . . . 7
⊢ ((𝑥 ∈ V ∧
(∗‘((ℝ D 𝐹)‘𝑥)) ∈ ℂ ∧ 𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D
𝐹)‘𝑥))) → 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) |
68 | 27, 66, 4, 67 | mp3an2i 1321 |
. . . . . 6
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) |
69 | 54, 68 | eqelssd 3143 |
. . . . 5
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D
(∗ ∘ 𝐹)) = dom
(ℝ D 𝐹)) |
70 | 69 | feq2d 5300 |
. . . 4
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ((ℝ D
(∗ ∘ 𝐹)):dom
(ℝ D (∗ ∘ 𝐹))⟶ℂ ↔ (ℝ D
(∗ ∘ 𝐹)):dom
(ℝ D 𝐹)⟶ℂ)) |
71 | 20, 70 | mpbid 146 |
. . 3
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D
(∗ ∘ 𝐹)):dom
(ℝ D 𝐹)⟶ℂ) |
72 | 71 | feqmptd 5514 |
. 2
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D
(∗ ∘ 𝐹)) =
(𝑥 ∈ dom (ℝ D
𝐹) ↦ ((ℝ D
(∗ ∘ 𝐹))‘𝑥))) |
73 | 64 | feqmptd 5514 |
. . 3
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ ((ℝ D 𝐹)‘𝑥))) |
74 | | fveq2 5461 |
. . 3
⊢ (𝑦 = ((ℝ D 𝐹)‘𝑥) → (∗‘𝑦) = (∗‘((ℝ D 𝐹)‘𝑥))) |
75 | 65, 73, 46, 74 | fmptco 5626 |
. 2
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘
(ℝ D 𝐹)) = (𝑥 ∈ dom (ℝ D 𝐹) ↦
(∗‘((ℝ D 𝐹)‘𝑥)))) |
76 | 26, 72, 75 | 3eqtr4d 2197 |
1
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D
(∗ ∘ 𝐹)) =
(∗ ∘ (ℝ D 𝐹))) |