ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcj GIF version

Theorem dvcj 14888
Description: The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr 14887. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvcj ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹)))

Proof of Theorem dvcj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . 5 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝐹:𝑋⟶ℂ)
2 simplr 528 . . . . 5 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑋 ⊆ ℝ)
3 simpr 110 . . . . 5 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥 ∈ dom (ℝ D 𝐹))
41, 2, 3dvcjbr 14887 . . . 4 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝑥)))
5 cjf 10994 . . . . . . . . . . . 12 ∗:ℂ⟶ℂ
6 fco 5420 . . . . . . . . . . . 12 ((∗:ℂ⟶ℂ ∧ 𝐹:𝑋⟶ℂ) → (∗ ∘ 𝐹):𝑋⟶ℂ)
75, 6mpan 424 . . . . . . . . . . 11 (𝐹:𝑋⟶ℂ → (∗ ∘ 𝐹):𝑋⟶ℂ)
87adantr 276 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ 𝐹):𝑋⟶ℂ)
97fdmd 5411 . . . . . . . . . . . 12 (𝐹:𝑋⟶ℂ → dom (∗ ∘ 𝐹) = 𝑋)
109adantr 276 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (∗ ∘ 𝐹) = 𝑋)
1110feq2d 5392 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ((∗ ∘ 𝐹):dom (∗ ∘ 𝐹)⟶ℂ ↔ (∗ ∘ 𝐹):𝑋⟶ℂ))
128, 11mpbird 167 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ 𝐹):dom (∗ ∘ 𝐹)⟶ℂ)
13 simpr 110 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝑋 ⊆ ℝ)
1410, 13eqsstrd 3216 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (∗ ∘ 𝐹) ⊆ ℝ)
15 cnex 7998 . . . . . . . . . 10 ℂ ∈ V
16 reex 8008 . . . . . . . . . 10 ℝ ∈ V
1715, 16elpm2 6736 . . . . . . . . 9 ((∗ ∘ 𝐹) ∈ (ℂ ↑pm ℝ) ↔ ((∗ ∘ 𝐹):dom (∗ ∘ 𝐹)⟶ℂ ∧ dom (∗ ∘ 𝐹) ⊆ ℝ))
1812, 14, 17sylanbrc 417 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ 𝐹) ∈ (ℂ ↑pm ℝ))
19 dvfpm 14868 . . . . . . . 8 ((∗ ∘ 𝐹) ∈ (ℂ ↑pm ℝ) → (ℝ D (∗ ∘ 𝐹)):dom (ℝ D (∗ ∘ 𝐹))⟶ℂ)
2018, 19syl 14 . . . . . . 7 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)):dom (ℝ D (∗ ∘ 𝐹))⟶ℂ)
2120ffund 5408 . . . . . 6 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → Fun (ℝ D (∗ ∘ 𝐹)))
22 funbrfv 5596 . . . . . 6 (Fun (ℝ D (∗ ∘ 𝐹)) → (𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝑥)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥))))
2321, 22syl 14 . . . . 5 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝑥)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥))))
2423adantr 276 . . . 4 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → (𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝑥)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥))))
254, 24mpd 13 . . 3 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥)))
2625mpteq2dva 4120 . 2 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥 ∈ dom (ℝ D 𝐹) ↦ ((ℝ D (∗ ∘ 𝐹))‘𝑥)) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ (∗‘((ℝ D 𝐹)‘𝑥))))
27 vex 2763 . . . . . . . . . 10 𝑥 ∈ V
2820ffvelcdmda 5694 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) ∈ ℂ)
2928cjcld 11087 . . . . . . . . . 10 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → (∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥)) ∈ ℂ)
307ad2antrr 488 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → (∗ ∘ 𝐹):𝑋⟶ℂ)
31 simplr 528 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → 𝑋 ⊆ ℝ)
32 simpr 110 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹)))
3330, 31, 32dvcjbr 14887 . . . . . . . . . 10 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → 𝑥(ℝ D (∗ ∘ (∗ ∘ 𝐹)))(∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥)))
34 breldmg 4869 . . . . . . . . . 10 ((𝑥 ∈ V ∧ (∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥)) ∈ ℂ ∧ 𝑥(ℝ D (∗ ∘ (∗ ∘ 𝐹)))(∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥))) → 𝑥 ∈ dom (ℝ D (∗ ∘ (∗ ∘ 𝐹))))
3527, 29, 33, 34mp3an2i 1353 . . . . . . . . 9 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → 𝑥 ∈ dom (ℝ D (∗ ∘ (∗ ∘ 𝐹))))
3635ex 115 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹)) → 𝑥 ∈ dom (ℝ D (∗ ∘ (∗ ∘ 𝐹)))))
3736ssrdv 3186 . . . . . . 7 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D (∗ ∘ 𝐹)) ⊆ dom (ℝ D (∗ ∘ (∗ ∘ 𝐹))))
38 ffvelcdm 5692 . . . . . . . . . . . . 13 ((𝐹:𝑋⟶ℂ ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
3938adantlr 477 . . . . . . . . . . . 12 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
4039cjcjd 11090 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥𝑋) → (∗‘(∗‘(𝐹𝑥))) = (𝐹𝑥))
4140mpteq2dva 4120 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥𝑋 ↦ (∗‘(∗‘(𝐹𝑥)))) = (𝑥𝑋 ↦ (𝐹𝑥)))
4239cjcld 11087 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥𝑋) → (∗‘(𝐹𝑥)) ∈ ℂ)
43 simpl 109 . . . . . . . . . . . . 13 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:𝑋⟶ℂ)
4443feqmptd 5611 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
455a1i 9 . . . . . . . . . . . . 13 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ∗:ℂ⟶ℂ)
4645feqmptd 5611 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ∗ = (𝑦 ∈ ℂ ↦ (∗‘𝑦)))
47 fveq2 5555 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑥) → (∗‘𝑦) = (∗‘(𝐹𝑥)))
4839, 44, 46, 47fmptco 5725 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ 𝐹) = (𝑥𝑋 ↦ (∗‘(𝐹𝑥))))
49 fveq2 5555 . . . . . . . . . . 11 (𝑦 = (∗‘(𝐹𝑥)) → (∗‘𝑦) = (∗‘(∗‘(𝐹𝑥))))
5042, 48, 46, 49fmptco 5725 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ (∗ ∘ 𝐹)) = (𝑥𝑋 ↦ (∗‘(∗‘(𝐹𝑥)))))
5141, 50, 443eqtr4d 2236 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ (∗ ∘ 𝐹)) = 𝐹)
5251oveq2d 5935 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ (∗ ∘ 𝐹))) = (ℝ D 𝐹))
5352dmeqd 4865 . . . . . . 7 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D (∗ ∘ (∗ ∘ 𝐹))) = dom (ℝ D 𝐹))
5437, 53sseqtrd 3218 . . . . . 6 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D (∗ ∘ 𝐹)) ⊆ dom (ℝ D 𝐹))
55 ffdm 5425 . . . . . . . . . . . . 13 (𝐹:𝑋⟶ℂ → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑋))
5655simpld 112 . . . . . . . . . . . 12 (𝐹:𝑋⟶ℂ → 𝐹:dom 𝐹⟶ℂ)
5756adantr 276 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:dom 𝐹⟶ℂ)
58 fdm 5410 . . . . . . . . . . . . 13 (𝐹:𝑋⟶ℂ → dom 𝐹 = 𝑋)
5958adantr 276 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom 𝐹 = 𝑋)
6059, 13eqsstrd 3216 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom 𝐹 ⊆ ℝ)
6115, 16elpm2 6736 . . . . . . . . . . 11 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
6257, 60, 61sylanbrc 417 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
63 dvfpm 14868 . . . . . . . . . 10 (𝐹 ∈ (ℂ ↑pm ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
6462, 63syl 14 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
6564ffvelcdmda 5694 . . . . . . . 8 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
6665cjcld 11087 . . . . . . 7 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → (∗‘((ℝ D 𝐹)‘𝑥)) ∈ ℂ)
67 breldmg 4869 . . . . . . 7 ((𝑥 ∈ V ∧ (∗‘((ℝ D 𝐹)‘𝑥)) ∈ ℂ ∧ 𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝑥))) → 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹)))
6827, 66, 4, 67mp3an2i 1353 . . . . . 6 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹)))
6954, 68eqelssd 3199 . . . . 5 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D (∗ ∘ 𝐹)) = dom (ℝ D 𝐹))
7069feq2d 5392 . . . 4 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ((ℝ D (∗ ∘ 𝐹)):dom (ℝ D (∗ ∘ 𝐹))⟶ℂ ↔ (ℝ D (∗ ∘ 𝐹)):dom (ℝ D 𝐹)⟶ℂ))
7120, 70mpbid 147 . . 3 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)):dom (ℝ D 𝐹)⟶ℂ)
7271feqmptd 5611 . 2 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ ((ℝ D (∗ ∘ 𝐹))‘𝑥)))
7364feqmptd 5611 . . 3 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ ((ℝ D 𝐹)‘𝑥)))
74 fveq2 5555 . . 3 (𝑦 = ((ℝ D 𝐹)‘𝑥) → (∗‘𝑦) = (∗‘((ℝ D 𝐹)‘𝑥)))
7565, 73, 46, 74fmptco 5725 . 2 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ (ℝ D 𝐹)) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ (∗‘((ℝ D 𝐹)‘𝑥))))
7626, 72, 753eqtr4d 2236 1 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  wss 3154   class class class wbr 4030  cmpt 4091  dom cdm 4660  ccom 4664  Fun wfun 5249  wf 5251  cfv 5255  (class class class)co 5919  pm cpm 6705  cc 7872  cr 7873  ccj 10986   D cdv 14834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-map 6706  df-pm 6707  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-ioo 9961  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-rest 12855  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045  df-mopn 14046  df-top 14177  df-topon 14190  df-bases 14222  df-ntr 14275  df-cn 14367  df-cnp 14368  df-cncf 14750  df-limced 14835  df-dvap 14836
This theorem is referenced by:  dvfre  14889  dvmptcjx  14903
  Copyright terms: Public domain W3C validator