Proof of Theorem ctinfomlemom
| Step | Hyp | Ref
| Expression |
| 1 | | ctinfom.f |
. . . 4
⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
| 2 | | ctinfom.n |
. . . . . . 7
⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| 3 | 2 | frechashgf1o 10520 |
. . . . . 6
⊢ 𝑁:ω–1-1-onto→ℕ0 |
| 4 | | f1ocnv 5517 |
. . . . . 6
⊢ (𝑁:ω–1-1-onto→ℕ0 → ◡𝑁:ℕ0–1-1-onto→ω) |
| 5 | 3, 4 | ax-mp 5 |
. . . . 5
⊢ ◡𝑁:ℕ0–1-1-onto→ω |
| 6 | | f1ofo 5511 |
. . . . 5
⊢ (◡𝑁:ℕ0–1-1-onto→ω → ◡𝑁:ℕ0–onto→ω) |
| 7 | 5, 6 | ax-mp 5 |
. . . 4
⊢ ◡𝑁:ℕ0–onto→ω |
| 8 | | foco 5491 |
. . . 4
⊢ ((𝐹:ω–onto→𝐴 ∧ ◡𝑁:ℕ0–onto→ω) → (𝐹 ∘ ◡𝑁):ℕ0–onto→𝐴) |
| 9 | 1, 7, 8 | sylancl 413 |
. . 3
⊢ (𝜑 → (𝐹 ∘ ◡𝑁):ℕ0–onto→𝐴) |
| 10 | | ctinfom.g |
. . . 4
⊢ 𝐺 = (𝐹 ∘ ◡𝑁) |
| 11 | | foeq1 5476 |
. . . 4
⊢ (𝐺 = (𝐹 ∘ ◡𝑁) → (𝐺:ℕ0–onto→𝐴 ↔ (𝐹 ∘ ◡𝑁):ℕ0–onto→𝐴)) |
| 12 | 10, 11 | ax-mp 5 |
. . 3
⊢ (𝐺:ℕ0–onto→𝐴 ↔ (𝐹 ∘ ◡𝑁):ℕ0–onto→𝐴) |
| 13 | 9, 12 | sylibr 134 |
. 2
⊢ (𝜑 → 𝐺:ℕ0–onto→𝐴) |
| 14 | | imaeq2 5005 |
. . . . . . . 8
⊢ (𝑛 = suc (◡𝑁‘𝑚) → (𝐹 “ 𝑛) = (𝐹 “ suc (◡𝑁‘𝑚))) |
| 15 | 14 | eleq2d 2266 |
. . . . . . 7
⊢ (𝑛 = suc (◡𝑁‘𝑚) → ((𝐹‘𝑘) ∈ (𝐹 “ 𝑛) ↔ (𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) |
| 16 | 15 | notbid 668 |
. . . . . 6
⊢ (𝑛 = suc (◡𝑁‘𝑚) → (¬ (𝐹‘𝑘) ∈ (𝐹 “ 𝑛) ↔ ¬ (𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) |
| 17 | 16 | rexbidv 2498 |
. . . . 5
⊢ (𝑛 = suc (◡𝑁‘𝑚) → (∃𝑘 ∈ ω ¬ (𝐹‘𝑘) ∈ (𝐹 “ 𝑛) ↔ ∃𝑘 ∈ ω ¬ (𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) |
| 18 | | ctinfom.inf |
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝐹‘𝑘) ∈ (𝐹 “ 𝑛)) |
| 19 | 18 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
∀𝑛 ∈ ω
∃𝑘 ∈ ω
¬ (𝐹‘𝑘) ∈ (𝐹 “ 𝑛)) |
| 20 | | f1of 5504 |
. . . . . . . . 9
⊢ (◡𝑁:ℕ0–1-1-onto→ω → ◡𝑁:ℕ0⟶ω) |
| 21 | 5, 20 | ax-mp 5 |
. . . . . . . 8
⊢ ◡𝑁:ℕ0⟶ω |
| 22 | 21 | a1i 9 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ◡𝑁:ℕ0⟶ω) |
| 23 | | simpr 110 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
ℕ0) |
| 24 | 22, 23 | ffvelcdmd 5698 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (◡𝑁‘𝑚) ∈ ω) |
| 25 | | peano2 4631 |
. . . . . 6
⊢ ((◡𝑁‘𝑚) ∈ ω → suc (◡𝑁‘𝑚) ∈ ω) |
| 26 | 24, 25 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → suc
(◡𝑁‘𝑚) ∈ ω) |
| 27 | 17, 19, 26 | rspcdva 2873 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
∃𝑘 ∈ ω
¬ (𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚))) |
| 28 | | f1of 5504 |
. . . . . . . 8
⊢ (𝑁:ω–1-1-onto→ℕ0 → 𝑁:ω⟶ℕ0) |
| 29 | 3, 28 | ax-mp 5 |
. . . . . . 7
⊢ 𝑁:ω⟶ℕ0 |
| 30 | 29 | a1i 9 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) → 𝑁:ω⟶ℕ0) |
| 31 | | simprl 529 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) → 𝑘 ∈ ω) |
| 32 | 30, 31 | ffvelcdmd 5698 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) → (𝑁‘𝑘) ∈
ℕ0) |
| 33 | 10 | fveq1i 5559 |
. . . . . . . . . . 11
⊢ (𝐺‘(𝑁‘𝑘)) = ((𝐹 ∘ ◡𝑁)‘(𝑁‘𝑘)) |
| 34 | 32 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁‘𝑘) ∈
ℕ0) |
| 35 | | fvco3 5632 |
. . . . . . . . . . . 12
⊢ ((◡𝑁:ℕ0⟶ω ∧
(𝑁‘𝑘) ∈ ℕ0) → ((𝐹 ∘ ◡𝑁)‘(𝑁‘𝑘)) = (𝐹‘(◡𝑁‘(𝑁‘𝑘)))) |
| 36 | 21, 34, 35 | sylancr 414 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐹 ∘ ◡𝑁)‘(𝑁‘𝑘)) = (𝐹‘(◡𝑁‘(𝑁‘𝑘)))) |
| 37 | 33, 36 | eqtrid 2241 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺‘(𝑁‘𝑘)) = (𝐹‘(◡𝑁‘(𝑁‘𝑘)))) |
| 38 | 31 | adantr 276 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝑘 ∈ ω) |
| 39 | | f1ocnvfv1 5824 |
. . . . . . . . . . . . 13
⊢ ((𝑁:ω–1-1-onto→ℕ0 ∧ 𝑘 ∈ ω) → (◡𝑁‘(𝑁‘𝑘)) = 𝑘) |
| 40 | 3, 39 | mpan 424 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ω → (◡𝑁‘(𝑁‘𝑘)) = 𝑘) |
| 41 | 40 | fveq2d 5562 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ω → (𝐹‘(◡𝑁‘(𝑁‘𝑘))) = (𝐹‘𝑘)) |
| 42 | 38, 41 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐹‘(◡𝑁‘(𝑁‘𝑘))) = (𝐹‘𝑘)) |
| 43 | 37, 42 | eqtrd 2229 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺‘(𝑁‘𝑘)) = (𝐹‘𝑘)) |
| 44 | | simplrr 536 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ¬ (𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚))) |
| 45 | 43, 44 | eqneltrd 2292 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ¬ (𝐺‘(𝑁‘𝑘)) ∈ (𝐹 “ suc (◡𝑁‘𝑚))) |
| 46 | | simpr 110 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑚 ∈ ℕ0)
∧ (𝑘 ∈ ω
∧ ¬ (𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) ∧ (𝐺‘(𝑁‘𝑘)) = (𝐺‘𝑖)) → (𝐺‘(𝑁‘𝑘)) = (𝐺‘𝑖)) |
| 47 | 10 | fveq1i 5559 |
. . . . . . . . . . . 12
⊢ (𝐺‘𝑖) = ((𝐹 ∘ ◡𝑁)‘𝑖) |
| 48 | | elfznn0 10189 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (0...𝑚) → 𝑖 ∈ ℕ0) |
| 49 | 48 | adantl 277 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝑖 ∈ ℕ0) |
| 50 | | fvco3 5632 |
. . . . . . . . . . . . 13
⊢ ((◡𝑁:ℕ0⟶ω ∧
𝑖 ∈
ℕ0) → ((𝐹 ∘ ◡𝑁)‘𝑖) = (𝐹‘(◡𝑁‘𝑖))) |
| 51 | 21, 49, 50 | sylancr 414 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐹 ∘ ◡𝑁)‘𝑖) = (𝐹‘(◡𝑁‘𝑖))) |
| 52 | 47, 51 | eqtrid 2241 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺‘𝑖) = (𝐹‘(◡𝑁‘𝑖))) |
| 53 | | elfzle2 10103 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0...𝑚) → 𝑖 ≤ 𝑚) |
| 54 | 53 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝑖 ≤ 𝑚) |
| 55 | | 0zd 9338 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 0 ∈ ℤ) |
| 56 | 21 | a1i 9 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ◡𝑁:ℕ0⟶ω) |
| 57 | 56, 49 | ffvelcdmd 5698 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (◡𝑁‘𝑖) ∈ ω) |
| 58 | 24 | ad2antrr 488 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (◡𝑁‘𝑚) ∈ ω) |
| 59 | 55, 2, 57, 58 | frec2uzled 10521 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((◡𝑁‘𝑖) ⊆ (◡𝑁‘𝑚) ↔ (𝑁‘(◡𝑁‘𝑖)) ≤ (𝑁‘(◡𝑁‘𝑚)))) |
| 60 | | f1ocnvfv2 5825 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁:ω–1-1-onto→ℕ0 ∧ 𝑖 ∈ ℕ0) → (𝑁‘(◡𝑁‘𝑖)) = 𝑖) |
| 61 | 3, 49, 60 | sylancr 414 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁‘(◡𝑁‘𝑖)) = 𝑖) |
| 62 | 23 | ad2antrr 488 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝑚 ∈ ℕ0) |
| 63 | | f1ocnvfv2 5825 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁:ω–1-1-onto→ℕ0 ∧ 𝑚 ∈ ℕ0) → (𝑁‘(◡𝑁‘𝑚)) = 𝑚) |
| 64 | 3, 62, 63 | sylancr 414 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁‘(◡𝑁‘𝑚)) = 𝑚) |
| 65 | 61, 64 | breq12d 4046 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝑁‘(◡𝑁‘𝑖)) ≤ (𝑁‘(◡𝑁‘𝑚)) ↔ 𝑖 ≤ 𝑚)) |
| 66 | 59, 65 | bitrd 188 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((◡𝑁‘𝑖) ⊆ (◡𝑁‘𝑚) ↔ 𝑖 ≤ 𝑚)) |
| 67 | 54, 66 | mpbird 167 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (◡𝑁‘𝑖) ⊆ (◡𝑁‘𝑚)) |
| 68 | | nnsssuc 6560 |
. . . . . . . . . . . . . 14
⊢ (((◡𝑁‘𝑖) ∈ ω ∧ (◡𝑁‘𝑚) ∈ ω) → ((◡𝑁‘𝑖) ⊆ (◡𝑁‘𝑚) ↔ (◡𝑁‘𝑖) ∈ suc (◡𝑁‘𝑚))) |
| 69 | 57, 58, 68 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((◡𝑁‘𝑖) ⊆ (◡𝑁‘𝑚) ↔ (◡𝑁‘𝑖) ∈ suc (◡𝑁‘𝑚))) |
| 70 | 67, 69 | mpbid 147 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (◡𝑁‘𝑖) ∈ suc (◡𝑁‘𝑚)) |
| 71 | 1 | ad3antrrr 492 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝐹:ω–onto→𝐴) |
| 72 | | fof 5480 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:ω–onto→𝐴 → 𝐹:ω⟶𝐴) |
| 73 | 71, 72 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝐹:ω⟶𝐴) |
| 74 | 73 | ffund 5411 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → Fun 𝐹) |
| 75 | 73 | fdmd 5414 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → dom 𝐹 = ω) |
| 76 | 57, 75 | eleqtrrd 2276 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (◡𝑁‘𝑖) ∈ dom 𝐹) |
| 77 | | funfvima 5794 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝐹 ∧ (◡𝑁‘𝑖) ∈ dom 𝐹) → ((◡𝑁‘𝑖) ∈ suc (◡𝑁‘𝑚) → (𝐹‘(◡𝑁‘𝑖)) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) |
| 78 | 74, 76, 77 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((◡𝑁‘𝑖) ∈ suc (◡𝑁‘𝑚) → (𝐹‘(◡𝑁‘𝑖)) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) |
| 79 | 70, 78 | mpd 13 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐹‘(◡𝑁‘𝑖)) ∈ (𝐹 “ suc (◡𝑁‘𝑚))) |
| 80 | 52, 79 | eqeltrd 2273 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺‘𝑖) ∈ (𝐹 “ suc (◡𝑁‘𝑚))) |
| 81 | 80 | adantr 276 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑚 ∈ ℕ0)
∧ (𝑘 ∈ ω
∧ ¬ (𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) ∧ (𝐺‘(𝑁‘𝑘)) = (𝐺‘𝑖)) → (𝐺‘𝑖) ∈ (𝐹 “ suc (◡𝑁‘𝑚))) |
| 82 | 46, 81 | eqeltrd 2273 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑚 ∈ ℕ0)
∧ (𝑘 ∈ ω
∧ ¬ (𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) ∧ (𝐺‘(𝑁‘𝑘)) = (𝐺‘𝑖)) → (𝐺‘(𝑁‘𝑘)) ∈ (𝐹 “ suc (◡𝑁‘𝑚))) |
| 83 | 45, 82 | mtand 666 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ¬ (𝐺‘(𝑁‘𝑘)) = (𝐺‘𝑖)) |
| 84 | 83 | neqned 2374 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺‘(𝑁‘𝑘)) ≠ (𝐺‘𝑖)) |
| 85 | 84 | ralrimiva 2570 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) → ∀𝑖 ∈ (0...𝑚)(𝐺‘(𝑁‘𝑘)) ≠ (𝐺‘𝑖)) |
| 86 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑗 = (𝑁‘𝑘) → (𝐺‘𝑗) = (𝐺‘(𝑁‘𝑘))) |
| 87 | 86 | neeq1d 2385 |
. . . . . . 7
⊢ (𝑗 = (𝑁‘𝑘) → ((𝐺‘𝑗) ≠ (𝐺‘𝑖) ↔ (𝐺‘(𝑁‘𝑘)) ≠ (𝐺‘𝑖))) |
| 88 | 87 | ralbidv 2497 |
. . . . . 6
⊢ (𝑗 = (𝑁‘𝑘) → (∀𝑖 ∈ (0...𝑚)(𝐺‘𝑗) ≠ (𝐺‘𝑖) ↔ ∀𝑖 ∈ (0...𝑚)(𝐺‘(𝑁‘𝑘)) ≠ (𝐺‘𝑖))) |
| 89 | 88 | rspcev 2868 |
. . . . 5
⊢ (((𝑁‘𝑘) ∈ ℕ0 ∧
∀𝑖 ∈ (0...𝑚)(𝐺‘(𝑁‘𝑘)) ≠ (𝐺‘𝑖)) → ∃𝑗 ∈ ℕ0 ∀𝑖 ∈ (0...𝑚)(𝐺‘𝑗) ≠ (𝐺‘𝑖)) |
| 90 | 32, 85, 89 | syl2anc 411 |
. . . 4
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬
(𝐹‘𝑘) ∈ (𝐹 “ suc (◡𝑁‘𝑚)))) → ∃𝑗 ∈ ℕ0 ∀𝑖 ∈ (0...𝑚)(𝐺‘𝑗) ≠ (𝐺‘𝑖)) |
| 91 | 27, 90 | rexlimddv 2619 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
∃𝑗 ∈
ℕ0 ∀𝑖 ∈ (0...𝑚)(𝐺‘𝑗) ≠ (𝐺‘𝑖)) |
| 92 | 91 | ralrimiva 2570 |
. 2
⊢ (𝜑 → ∀𝑚 ∈ ℕ0 ∃𝑗 ∈ ℕ0
∀𝑖 ∈ (0...𝑚)(𝐺‘𝑗) ≠ (𝐺‘𝑖)) |
| 93 | 13, 92 | jca 306 |
1
⊢ (𝜑 → (𝐺:ℕ0–onto→𝐴 ∧ ∀𝑚 ∈ ℕ0 ∃𝑗 ∈ ℕ0
∀𝑖 ∈ (0...𝑚)(𝐺‘𝑗) ≠ (𝐺‘𝑖))) |