ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctinfomlemom GIF version

Theorem ctinfomlemom 12993
Description: Lemma for ctinfom 12994. Converting between ω and 0. (Contributed by Jim Kingdon, 10-Aug-2023.)
Hypotheses
Ref Expression
ctinfom.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ctinfom.g 𝐺 = (𝐹𝑁)
ctinfom.f (𝜑𝐹:ω–onto𝐴)
ctinfom.inf (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹𝑛))
Assertion
Ref Expression
ctinfomlemom (𝜑 → (𝐺:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖)))
Distinct variable groups:   𝑖,𝐹,𝑥   𝑛,𝐹   𝑗,𝐺,𝑘   𝑖,𝑁,𝑗,𝑘   𝑛,𝑁,𝑘   𝑥,𝑁,𝑘   𝑖,𝑚,𝑗,𝑘   𝜑,𝑖,𝑘,𝑚,𝑥   𝑚,𝑛
Allowed substitution hints:   𝜑(𝑗,𝑛)   𝐴(𝑥,𝑖,𝑗,𝑘,𝑚,𝑛)   𝐹(𝑗,𝑘,𝑚)   𝐺(𝑥,𝑖,𝑚,𝑛)   𝑁(𝑚)

Proof of Theorem ctinfomlemom
StepHypRef Expression
1 ctinfom.f . . . 4 (𝜑𝐹:ω–onto𝐴)
2 ctinfom.n . . . . . . 7 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
32frechashgf1o 10645 . . . . . 6 𝑁:ω–1-1-onto→ℕ0
4 f1ocnv 5584 . . . . . 6 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
53, 4ax-mp 5 . . . . 5 𝑁:ℕ01-1-onto→ω
6 f1ofo 5578 . . . . 5 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0onto→ω)
75, 6ax-mp 5 . . . 4 𝑁:ℕ0onto→ω
8 foco 5558 . . . 4 ((𝐹:ω–onto𝐴𝑁:ℕ0onto→ω) → (𝐹𝑁):ℕ0onto𝐴)
91, 7, 8sylancl 413 . . 3 (𝜑 → (𝐹𝑁):ℕ0onto𝐴)
10 ctinfom.g . . . 4 𝐺 = (𝐹𝑁)
11 foeq1 5543 . . . 4 (𝐺 = (𝐹𝑁) → (𝐺:ℕ0onto𝐴 ↔ (𝐹𝑁):ℕ0onto𝐴))
1210, 11ax-mp 5 . . 3 (𝐺:ℕ0onto𝐴 ↔ (𝐹𝑁):ℕ0onto𝐴)
139, 12sylibr 134 . 2 (𝜑𝐺:ℕ0onto𝐴)
14 imaeq2 5063 . . . . . . . 8 (𝑛 = suc (𝑁𝑚) → (𝐹𝑛) = (𝐹 “ suc (𝑁𝑚)))
1514eleq2d 2299 . . . . . . 7 (𝑛 = suc (𝑁𝑚) → ((𝐹𝑘) ∈ (𝐹𝑛) ↔ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚))))
1615notbid 671 . . . . . 6 (𝑛 = suc (𝑁𝑚) → (¬ (𝐹𝑘) ∈ (𝐹𝑛) ↔ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚))))
1716rexbidv 2531 . . . . 5 (𝑛 = suc (𝑁𝑚) → (∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹𝑛) ↔ ∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚))))
18 ctinfom.inf . . . . . 6 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹𝑛))
1918adantr 276 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹𝑛))
20 f1of 5571 . . . . . . . . 9 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
215, 20ax-mp 5 . . . . . . . 8 𝑁:ℕ0⟶ω
2221a1i 9 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → 𝑁:ℕ0⟶ω)
23 simpr 110 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
2422, 23ffvelcdmd 5770 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) ∈ ω)
25 peano2 4686 . . . . . 6 ((𝑁𝑚) ∈ ω → suc (𝑁𝑚) ∈ ω)
2624, 25syl 14 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → suc (𝑁𝑚) ∈ ω)
2717, 19, 26rspcdva 2912 . . . 4 ((𝜑𝑚 ∈ ℕ0) → ∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))
28 f1of 5571 . . . . . . . 8 (𝑁:ω–1-1-onto→ℕ0𝑁:ω⟶ℕ0)
293, 28ax-mp 5 . . . . . . 7 𝑁:ω⟶ℕ0
3029a1i 9 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) → 𝑁:ω⟶ℕ0)
31 simprl 529 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) → 𝑘 ∈ ω)
3230, 31ffvelcdmd 5770 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) → (𝑁𝑘) ∈ ℕ0)
3310fveq1i 5627 . . . . . . . . . . 11 (𝐺‘(𝑁𝑘)) = ((𝐹𝑁)‘(𝑁𝑘))
3432adantr 276 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁𝑘) ∈ ℕ0)
35 fvco3 5704 . . . . . . . . . . . 12 ((𝑁:ℕ0⟶ω ∧ (𝑁𝑘) ∈ ℕ0) → ((𝐹𝑁)‘(𝑁𝑘)) = (𝐹‘(𝑁‘(𝑁𝑘))))
3621, 34, 35sylancr 414 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐹𝑁)‘(𝑁𝑘)) = (𝐹‘(𝑁‘(𝑁𝑘))))
3733, 36eqtrid 2274 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺‘(𝑁𝑘)) = (𝐹‘(𝑁‘(𝑁𝑘))))
3831adantr 276 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝑘 ∈ ω)
39 f1ocnvfv1 5900 . . . . . . . . . . . . 13 ((𝑁:ω–1-1-onto→ℕ0𝑘 ∈ ω) → (𝑁‘(𝑁𝑘)) = 𝑘)
403, 39mpan 424 . . . . . . . . . . . 12 (𝑘 ∈ ω → (𝑁‘(𝑁𝑘)) = 𝑘)
4140fveq2d 5630 . . . . . . . . . . 11 (𝑘 ∈ ω → (𝐹‘(𝑁‘(𝑁𝑘))) = (𝐹𝑘))
4238, 41syl 14 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐹‘(𝑁‘(𝑁𝑘))) = (𝐹𝑘))
4337, 42eqtrd 2262 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺‘(𝑁𝑘)) = (𝐹𝑘))
44 simplrr 536 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))
4543, 44eqneltrd 2325 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ¬ (𝐺‘(𝑁𝑘)) ∈ (𝐹 “ suc (𝑁𝑚)))
46 simpr 110 . . . . . . . . 9 (((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) ∧ (𝐺‘(𝑁𝑘)) = (𝐺𝑖)) → (𝐺‘(𝑁𝑘)) = (𝐺𝑖))
4710fveq1i 5627 . . . . . . . . . . . 12 (𝐺𝑖) = ((𝐹𝑁)‘𝑖)
48 elfznn0 10306 . . . . . . . . . . . . . 14 (𝑖 ∈ (0...𝑚) → 𝑖 ∈ ℕ0)
4948adantl 277 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝑖 ∈ ℕ0)
50 fvco3 5704 . . . . . . . . . . . . 13 ((𝑁:ℕ0⟶ω ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑁)‘𝑖) = (𝐹‘(𝑁𝑖)))
5121, 49, 50sylancr 414 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐹𝑁)‘𝑖) = (𝐹‘(𝑁𝑖)))
5247, 51eqtrid 2274 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺𝑖) = (𝐹‘(𝑁𝑖)))
53 elfzle2 10220 . . . . . . . . . . . . . . 15 (𝑖 ∈ (0...𝑚) → 𝑖𝑚)
5453adantl 277 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝑖𝑚)
55 0zd 9454 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 0 ∈ ℤ)
5621a1i 9 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝑁:ℕ0⟶ω)
5756, 49ffvelcdmd 5770 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁𝑖) ∈ ω)
5824ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁𝑚) ∈ ω)
5955, 2, 57, 58frec2uzled 10646 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝑁𝑖) ⊆ (𝑁𝑚) ↔ (𝑁‘(𝑁𝑖)) ≤ (𝑁‘(𝑁𝑚))))
60 f1ocnvfv2 5901 . . . . . . . . . . . . . . . . 17 ((𝑁:ω–1-1-onto→ℕ0𝑖 ∈ ℕ0) → (𝑁‘(𝑁𝑖)) = 𝑖)
613, 49, 60sylancr 414 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁‘(𝑁𝑖)) = 𝑖)
6223ad2antrr 488 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝑚 ∈ ℕ0)
63 f1ocnvfv2 5901 . . . . . . . . . . . . . . . . 17 ((𝑁:ω–1-1-onto→ℕ0𝑚 ∈ ℕ0) → (𝑁‘(𝑁𝑚)) = 𝑚)
643, 62, 63sylancr 414 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁‘(𝑁𝑚)) = 𝑚)
6561, 64breq12d 4095 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝑁‘(𝑁𝑖)) ≤ (𝑁‘(𝑁𝑚)) ↔ 𝑖𝑚))
6659, 65bitrd 188 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝑁𝑖) ⊆ (𝑁𝑚) ↔ 𝑖𝑚))
6754, 66mpbird 167 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁𝑖) ⊆ (𝑁𝑚))
68 nnsssuc 6646 . . . . . . . . . . . . . 14 (((𝑁𝑖) ∈ ω ∧ (𝑁𝑚) ∈ ω) → ((𝑁𝑖) ⊆ (𝑁𝑚) ↔ (𝑁𝑖) ∈ suc (𝑁𝑚)))
6957, 58, 68syl2anc 411 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝑁𝑖) ⊆ (𝑁𝑚) ↔ (𝑁𝑖) ∈ suc (𝑁𝑚)))
7067, 69mpbid 147 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁𝑖) ∈ suc (𝑁𝑚))
711ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝐹:ω–onto𝐴)
72 fof 5547 . . . . . . . . . . . . . . 15 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
7371, 72syl 14 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝐹:ω⟶𝐴)
7473ffund 5476 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → Fun 𝐹)
7573fdmd 5479 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → dom 𝐹 = ω)
7657, 75eleqtrrd 2309 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁𝑖) ∈ dom 𝐹)
77 funfvima 5870 . . . . . . . . . . . . 13 ((Fun 𝐹 ∧ (𝑁𝑖) ∈ dom 𝐹) → ((𝑁𝑖) ∈ suc (𝑁𝑚) → (𝐹‘(𝑁𝑖)) ∈ (𝐹 “ suc (𝑁𝑚))))
7874, 76, 77syl2anc 411 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝑁𝑖) ∈ suc (𝑁𝑚) → (𝐹‘(𝑁𝑖)) ∈ (𝐹 “ suc (𝑁𝑚))))
7970, 78mpd 13 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐹‘(𝑁𝑖)) ∈ (𝐹 “ suc (𝑁𝑚)))
8052, 79eqeltrd 2306 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺𝑖) ∈ (𝐹 “ suc (𝑁𝑚)))
8180adantr 276 . . . . . . . . 9 (((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) ∧ (𝐺‘(𝑁𝑘)) = (𝐺𝑖)) → (𝐺𝑖) ∈ (𝐹 “ suc (𝑁𝑚)))
8246, 81eqeltrd 2306 . . . . . . . 8 (((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) ∧ (𝐺‘(𝑁𝑘)) = (𝐺𝑖)) → (𝐺‘(𝑁𝑘)) ∈ (𝐹 “ suc (𝑁𝑚)))
8345, 82mtand 669 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ¬ (𝐺‘(𝑁𝑘)) = (𝐺𝑖))
8483neqned 2407 . . . . . 6 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺‘(𝑁𝑘)) ≠ (𝐺𝑖))
8584ralrimiva 2603 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) → ∀𝑖 ∈ (0...𝑚)(𝐺‘(𝑁𝑘)) ≠ (𝐺𝑖))
86 fveq2 5626 . . . . . . . 8 (𝑗 = (𝑁𝑘) → (𝐺𝑗) = (𝐺‘(𝑁𝑘)))
8786neeq1d 2418 . . . . . . 7 (𝑗 = (𝑁𝑘) → ((𝐺𝑗) ≠ (𝐺𝑖) ↔ (𝐺‘(𝑁𝑘)) ≠ (𝐺𝑖)))
8887ralbidv 2530 . . . . . 6 (𝑗 = (𝑁𝑘) → (∀𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖) ↔ ∀𝑖 ∈ (0...𝑚)(𝐺‘(𝑁𝑘)) ≠ (𝐺𝑖)))
8988rspcev 2907 . . . . 5 (((𝑁𝑘) ∈ ℕ0 ∧ ∀𝑖 ∈ (0...𝑚)(𝐺‘(𝑁𝑘)) ≠ (𝐺𝑖)) → ∃𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖))
9032, 85, 89syl2anc 411 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) → ∃𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖))
9127, 90rexlimddv 2653 . . 3 ((𝜑𝑚 ∈ ℕ0) → ∃𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖))
9291ralrimiva 2603 . 2 (𝜑 → ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖))
9313, 92jca 306 1 (𝜑 → (𝐺:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400  wral 2508  wrex 2509  wss 3197   class class class wbr 4082  cmpt 4144  suc csuc 4455  ωcom 4681  ccnv 4717  dom cdm 4718  cima 4721  ccom 4722  Fun wfun 5311  wf 5313  ontowfo 5315  1-1-ontowf1o 5316  cfv 5317  (class class class)co 6000  freccfrec 6534  0cc0 7995  1c1 7996   + caddc 7998  cle 8178  0cn0 9365  cz 9442  ...cfz 10200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201
This theorem is referenced by:  ctinfom  12994
  Copyright terms: Public domain W3C validator