ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctinfomlemom GIF version

Theorem ctinfomlemom 12873
Description: Lemma for ctinfom 12874. Converting between ω and 0. (Contributed by Jim Kingdon, 10-Aug-2023.)
Hypotheses
Ref Expression
ctinfom.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ctinfom.g 𝐺 = (𝐹𝑁)
ctinfom.f (𝜑𝐹:ω–onto𝐴)
ctinfom.inf (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹𝑛))
Assertion
Ref Expression
ctinfomlemom (𝜑 → (𝐺:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖)))
Distinct variable groups:   𝑖,𝐹,𝑥   𝑛,𝐹   𝑗,𝐺,𝑘   𝑖,𝑁,𝑗,𝑘   𝑛,𝑁,𝑘   𝑥,𝑁,𝑘   𝑖,𝑚,𝑗,𝑘   𝜑,𝑖,𝑘,𝑚,𝑥   𝑚,𝑛
Allowed substitution hints:   𝜑(𝑗,𝑛)   𝐴(𝑥,𝑖,𝑗,𝑘,𝑚,𝑛)   𝐹(𝑗,𝑘,𝑚)   𝐺(𝑥,𝑖,𝑚,𝑛)   𝑁(𝑚)

Proof of Theorem ctinfomlemom
StepHypRef Expression
1 ctinfom.f . . . 4 (𝜑𝐹:ω–onto𝐴)
2 ctinfom.n . . . . . . 7 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
32frechashgf1o 10595 . . . . . 6 𝑁:ω–1-1-onto→ℕ0
4 f1ocnv 5547 . . . . . 6 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
53, 4ax-mp 5 . . . . 5 𝑁:ℕ01-1-onto→ω
6 f1ofo 5541 . . . . 5 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0onto→ω)
75, 6ax-mp 5 . . . 4 𝑁:ℕ0onto→ω
8 foco 5521 . . . 4 ((𝐹:ω–onto𝐴𝑁:ℕ0onto→ω) → (𝐹𝑁):ℕ0onto𝐴)
91, 7, 8sylancl 413 . . 3 (𝜑 → (𝐹𝑁):ℕ0onto𝐴)
10 ctinfom.g . . . 4 𝐺 = (𝐹𝑁)
11 foeq1 5506 . . . 4 (𝐺 = (𝐹𝑁) → (𝐺:ℕ0onto𝐴 ↔ (𝐹𝑁):ℕ0onto𝐴))
1210, 11ax-mp 5 . . 3 (𝐺:ℕ0onto𝐴 ↔ (𝐹𝑁):ℕ0onto𝐴)
139, 12sylibr 134 . 2 (𝜑𝐺:ℕ0onto𝐴)
14 imaeq2 5027 . . . . . . . 8 (𝑛 = suc (𝑁𝑚) → (𝐹𝑛) = (𝐹 “ suc (𝑁𝑚)))
1514eleq2d 2276 . . . . . . 7 (𝑛 = suc (𝑁𝑚) → ((𝐹𝑘) ∈ (𝐹𝑛) ↔ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚))))
1615notbid 669 . . . . . 6 (𝑛 = suc (𝑁𝑚) → (¬ (𝐹𝑘) ∈ (𝐹𝑛) ↔ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚))))
1716rexbidv 2508 . . . . 5 (𝑛 = suc (𝑁𝑚) → (∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹𝑛) ↔ ∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚))))
18 ctinfom.inf . . . . . 6 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹𝑛))
1918adantr 276 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹𝑛))
20 f1of 5534 . . . . . . . . 9 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
215, 20ax-mp 5 . . . . . . . 8 𝑁:ℕ0⟶ω
2221a1i 9 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → 𝑁:ℕ0⟶ω)
23 simpr 110 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
2422, 23ffvelcdmd 5729 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) ∈ ω)
25 peano2 4651 . . . . . 6 ((𝑁𝑚) ∈ ω → suc (𝑁𝑚) ∈ ω)
2624, 25syl 14 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → suc (𝑁𝑚) ∈ ω)
2717, 19, 26rspcdva 2886 . . . 4 ((𝜑𝑚 ∈ ℕ0) → ∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))
28 f1of 5534 . . . . . . . 8 (𝑁:ω–1-1-onto→ℕ0𝑁:ω⟶ℕ0)
293, 28ax-mp 5 . . . . . . 7 𝑁:ω⟶ℕ0
3029a1i 9 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) → 𝑁:ω⟶ℕ0)
31 simprl 529 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) → 𝑘 ∈ ω)
3230, 31ffvelcdmd 5729 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) → (𝑁𝑘) ∈ ℕ0)
3310fveq1i 5590 . . . . . . . . . . 11 (𝐺‘(𝑁𝑘)) = ((𝐹𝑁)‘(𝑁𝑘))
3432adantr 276 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁𝑘) ∈ ℕ0)
35 fvco3 5663 . . . . . . . . . . . 12 ((𝑁:ℕ0⟶ω ∧ (𝑁𝑘) ∈ ℕ0) → ((𝐹𝑁)‘(𝑁𝑘)) = (𝐹‘(𝑁‘(𝑁𝑘))))
3621, 34, 35sylancr 414 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐹𝑁)‘(𝑁𝑘)) = (𝐹‘(𝑁‘(𝑁𝑘))))
3733, 36eqtrid 2251 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺‘(𝑁𝑘)) = (𝐹‘(𝑁‘(𝑁𝑘))))
3831adantr 276 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝑘 ∈ ω)
39 f1ocnvfv1 5859 . . . . . . . . . . . . 13 ((𝑁:ω–1-1-onto→ℕ0𝑘 ∈ ω) → (𝑁‘(𝑁𝑘)) = 𝑘)
403, 39mpan 424 . . . . . . . . . . . 12 (𝑘 ∈ ω → (𝑁‘(𝑁𝑘)) = 𝑘)
4140fveq2d 5593 . . . . . . . . . . 11 (𝑘 ∈ ω → (𝐹‘(𝑁‘(𝑁𝑘))) = (𝐹𝑘))
4238, 41syl 14 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐹‘(𝑁‘(𝑁𝑘))) = (𝐹𝑘))
4337, 42eqtrd 2239 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺‘(𝑁𝑘)) = (𝐹𝑘))
44 simplrr 536 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))
4543, 44eqneltrd 2302 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ¬ (𝐺‘(𝑁𝑘)) ∈ (𝐹 “ suc (𝑁𝑚)))
46 simpr 110 . . . . . . . . 9 (((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) ∧ (𝐺‘(𝑁𝑘)) = (𝐺𝑖)) → (𝐺‘(𝑁𝑘)) = (𝐺𝑖))
4710fveq1i 5590 . . . . . . . . . . . 12 (𝐺𝑖) = ((𝐹𝑁)‘𝑖)
48 elfznn0 10256 . . . . . . . . . . . . . 14 (𝑖 ∈ (0...𝑚) → 𝑖 ∈ ℕ0)
4948adantl 277 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝑖 ∈ ℕ0)
50 fvco3 5663 . . . . . . . . . . . . 13 ((𝑁:ℕ0⟶ω ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑁)‘𝑖) = (𝐹‘(𝑁𝑖)))
5121, 49, 50sylancr 414 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐹𝑁)‘𝑖) = (𝐹‘(𝑁𝑖)))
5247, 51eqtrid 2251 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺𝑖) = (𝐹‘(𝑁𝑖)))
53 elfzle2 10170 . . . . . . . . . . . . . . 15 (𝑖 ∈ (0...𝑚) → 𝑖𝑚)
5453adantl 277 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝑖𝑚)
55 0zd 9404 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 0 ∈ ℤ)
5621a1i 9 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝑁:ℕ0⟶ω)
5756, 49ffvelcdmd 5729 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁𝑖) ∈ ω)
5824ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁𝑚) ∈ ω)
5955, 2, 57, 58frec2uzled 10596 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝑁𝑖) ⊆ (𝑁𝑚) ↔ (𝑁‘(𝑁𝑖)) ≤ (𝑁‘(𝑁𝑚))))
60 f1ocnvfv2 5860 . . . . . . . . . . . . . . . . 17 ((𝑁:ω–1-1-onto→ℕ0𝑖 ∈ ℕ0) → (𝑁‘(𝑁𝑖)) = 𝑖)
613, 49, 60sylancr 414 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁‘(𝑁𝑖)) = 𝑖)
6223ad2antrr 488 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝑚 ∈ ℕ0)
63 f1ocnvfv2 5860 . . . . . . . . . . . . . . . . 17 ((𝑁:ω–1-1-onto→ℕ0𝑚 ∈ ℕ0) → (𝑁‘(𝑁𝑚)) = 𝑚)
643, 62, 63sylancr 414 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁‘(𝑁𝑚)) = 𝑚)
6561, 64breq12d 4064 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝑁‘(𝑁𝑖)) ≤ (𝑁‘(𝑁𝑚)) ↔ 𝑖𝑚))
6659, 65bitrd 188 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝑁𝑖) ⊆ (𝑁𝑚) ↔ 𝑖𝑚))
6754, 66mpbird 167 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁𝑖) ⊆ (𝑁𝑚))
68 nnsssuc 6601 . . . . . . . . . . . . . 14 (((𝑁𝑖) ∈ ω ∧ (𝑁𝑚) ∈ ω) → ((𝑁𝑖) ⊆ (𝑁𝑚) ↔ (𝑁𝑖) ∈ suc (𝑁𝑚)))
6957, 58, 68syl2anc 411 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝑁𝑖) ⊆ (𝑁𝑚) ↔ (𝑁𝑖) ∈ suc (𝑁𝑚)))
7067, 69mpbid 147 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁𝑖) ∈ suc (𝑁𝑚))
711ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝐹:ω–onto𝐴)
72 fof 5510 . . . . . . . . . . . . . . 15 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
7371, 72syl 14 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝐹:ω⟶𝐴)
7473ffund 5439 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → Fun 𝐹)
7573fdmd 5442 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → dom 𝐹 = ω)
7657, 75eleqtrrd 2286 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁𝑖) ∈ dom 𝐹)
77 funfvima 5829 . . . . . . . . . . . . 13 ((Fun 𝐹 ∧ (𝑁𝑖) ∈ dom 𝐹) → ((𝑁𝑖) ∈ suc (𝑁𝑚) → (𝐹‘(𝑁𝑖)) ∈ (𝐹 “ suc (𝑁𝑚))))
7874, 76, 77syl2anc 411 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝑁𝑖) ∈ suc (𝑁𝑚) → (𝐹‘(𝑁𝑖)) ∈ (𝐹 “ suc (𝑁𝑚))))
7970, 78mpd 13 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐹‘(𝑁𝑖)) ∈ (𝐹 “ suc (𝑁𝑚)))
8052, 79eqeltrd 2283 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺𝑖) ∈ (𝐹 “ suc (𝑁𝑚)))
8180adantr 276 . . . . . . . . 9 (((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) ∧ (𝐺‘(𝑁𝑘)) = (𝐺𝑖)) → (𝐺𝑖) ∈ (𝐹 “ suc (𝑁𝑚)))
8246, 81eqeltrd 2283 . . . . . . . 8 (((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) ∧ (𝐺‘(𝑁𝑘)) = (𝐺𝑖)) → (𝐺‘(𝑁𝑘)) ∈ (𝐹 “ suc (𝑁𝑚)))
8345, 82mtand 667 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ¬ (𝐺‘(𝑁𝑘)) = (𝐺𝑖))
8483neqned 2384 . . . . . 6 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺‘(𝑁𝑘)) ≠ (𝐺𝑖))
8584ralrimiva 2580 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) → ∀𝑖 ∈ (0...𝑚)(𝐺‘(𝑁𝑘)) ≠ (𝐺𝑖))
86 fveq2 5589 . . . . . . . 8 (𝑗 = (𝑁𝑘) → (𝐺𝑗) = (𝐺‘(𝑁𝑘)))
8786neeq1d 2395 . . . . . . 7 (𝑗 = (𝑁𝑘) → ((𝐺𝑗) ≠ (𝐺𝑖) ↔ (𝐺‘(𝑁𝑘)) ≠ (𝐺𝑖)))
8887ralbidv 2507 . . . . . 6 (𝑗 = (𝑁𝑘) → (∀𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖) ↔ ∀𝑖 ∈ (0...𝑚)(𝐺‘(𝑁𝑘)) ≠ (𝐺𝑖)))
8988rspcev 2881 . . . . 5 (((𝑁𝑘) ∈ ℕ0 ∧ ∀𝑖 ∈ (0...𝑚)(𝐺‘(𝑁𝑘)) ≠ (𝐺𝑖)) → ∃𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖))
9032, 85, 89syl2anc 411 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) → ∃𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖))
9127, 90rexlimddv 2629 . . 3 ((𝜑𝑚 ∈ ℕ0) → ∃𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖))
9291ralrimiva 2580 . 2 (𝜑 → ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖))
9313, 92jca 306 1 (𝜑 → (𝐺:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wne 2377  wral 2485  wrex 2486  wss 3170   class class class wbr 4051  cmpt 4113  suc csuc 4420  ωcom 4646  ccnv 4682  dom cdm 4683  cima 4686  ccom 4687  Fun wfun 5274  wf 5276  ontowfo 5278  1-1-ontowf1o 5279  cfv 5280  (class class class)co 5957  freccfrec 6489  0cc0 7945  1c1 7946   + caddc 7948  cle 8128  0cn0 9315  cz 9392  ...cfz 10150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151
This theorem is referenced by:  ctinfom  12874
  Copyright terms: Public domain W3C validator