ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctinfomlemom GIF version

Theorem ctinfomlemom 12584
Description: Lemma for ctinfom 12585. Converting between ω and 0. (Contributed by Jim Kingdon, 10-Aug-2023.)
Hypotheses
Ref Expression
ctinfom.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ctinfom.g 𝐺 = (𝐹𝑁)
ctinfom.f (𝜑𝐹:ω–onto𝐴)
ctinfom.inf (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹𝑛))
Assertion
Ref Expression
ctinfomlemom (𝜑 → (𝐺:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖)))
Distinct variable groups:   𝑖,𝐹,𝑥   𝑛,𝐹   𝑗,𝐺,𝑘   𝑖,𝑁,𝑗,𝑘   𝑛,𝑁,𝑘   𝑥,𝑁,𝑘   𝑖,𝑚,𝑗,𝑘   𝜑,𝑖,𝑘,𝑚,𝑥   𝑚,𝑛
Allowed substitution hints:   𝜑(𝑗,𝑛)   𝐴(𝑥,𝑖,𝑗,𝑘,𝑚,𝑛)   𝐹(𝑗,𝑘,𝑚)   𝐺(𝑥,𝑖,𝑚,𝑛)   𝑁(𝑚)

Proof of Theorem ctinfomlemom
StepHypRef Expression
1 ctinfom.f . . . 4 (𝜑𝐹:ω–onto𝐴)
2 ctinfom.n . . . . . . 7 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
32frechashgf1o 10499 . . . . . 6 𝑁:ω–1-1-onto→ℕ0
4 f1ocnv 5513 . . . . . 6 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
53, 4ax-mp 5 . . . . 5 𝑁:ℕ01-1-onto→ω
6 f1ofo 5507 . . . . 5 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0onto→ω)
75, 6ax-mp 5 . . . 4 𝑁:ℕ0onto→ω
8 foco 5487 . . . 4 ((𝐹:ω–onto𝐴𝑁:ℕ0onto→ω) → (𝐹𝑁):ℕ0onto𝐴)
91, 7, 8sylancl 413 . . 3 (𝜑 → (𝐹𝑁):ℕ0onto𝐴)
10 ctinfom.g . . . 4 𝐺 = (𝐹𝑁)
11 foeq1 5472 . . . 4 (𝐺 = (𝐹𝑁) → (𝐺:ℕ0onto𝐴 ↔ (𝐹𝑁):ℕ0onto𝐴))
1210, 11ax-mp 5 . . 3 (𝐺:ℕ0onto𝐴 ↔ (𝐹𝑁):ℕ0onto𝐴)
139, 12sylibr 134 . 2 (𝜑𝐺:ℕ0onto𝐴)
14 imaeq2 5001 . . . . . . . 8 (𝑛 = suc (𝑁𝑚) → (𝐹𝑛) = (𝐹 “ suc (𝑁𝑚)))
1514eleq2d 2263 . . . . . . 7 (𝑛 = suc (𝑁𝑚) → ((𝐹𝑘) ∈ (𝐹𝑛) ↔ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚))))
1615notbid 668 . . . . . 6 (𝑛 = suc (𝑁𝑚) → (¬ (𝐹𝑘) ∈ (𝐹𝑛) ↔ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚))))
1716rexbidv 2495 . . . . 5 (𝑛 = suc (𝑁𝑚) → (∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹𝑛) ↔ ∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚))))
18 ctinfom.inf . . . . . 6 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹𝑛))
1918adantr 276 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹𝑛))
20 f1of 5500 . . . . . . . . 9 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
215, 20ax-mp 5 . . . . . . . 8 𝑁:ℕ0⟶ω
2221a1i 9 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → 𝑁:ℕ0⟶ω)
23 simpr 110 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
2422, 23ffvelcdmd 5694 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) ∈ ω)
25 peano2 4627 . . . . . 6 ((𝑁𝑚) ∈ ω → suc (𝑁𝑚) ∈ ω)
2624, 25syl 14 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → suc (𝑁𝑚) ∈ ω)
2717, 19, 26rspcdva 2869 . . . 4 ((𝜑𝑚 ∈ ℕ0) → ∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))
28 f1of 5500 . . . . . . . 8 (𝑁:ω–1-1-onto→ℕ0𝑁:ω⟶ℕ0)
293, 28ax-mp 5 . . . . . . 7 𝑁:ω⟶ℕ0
3029a1i 9 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) → 𝑁:ω⟶ℕ0)
31 simprl 529 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) → 𝑘 ∈ ω)
3230, 31ffvelcdmd 5694 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) → (𝑁𝑘) ∈ ℕ0)
3310fveq1i 5555 . . . . . . . . . . 11 (𝐺‘(𝑁𝑘)) = ((𝐹𝑁)‘(𝑁𝑘))
3432adantr 276 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁𝑘) ∈ ℕ0)
35 fvco3 5628 . . . . . . . . . . . 12 ((𝑁:ℕ0⟶ω ∧ (𝑁𝑘) ∈ ℕ0) → ((𝐹𝑁)‘(𝑁𝑘)) = (𝐹‘(𝑁‘(𝑁𝑘))))
3621, 34, 35sylancr 414 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐹𝑁)‘(𝑁𝑘)) = (𝐹‘(𝑁‘(𝑁𝑘))))
3733, 36eqtrid 2238 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺‘(𝑁𝑘)) = (𝐹‘(𝑁‘(𝑁𝑘))))
3831adantr 276 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝑘 ∈ ω)
39 f1ocnvfv1 5820 . . . . . . . . . . . . 13 ((𝑁:ω–1-1-onto→ℕ0𝑘 ∈ ω) → (𝑁‘(𝑁𝑘)) = 𝑘)
403, 39mpan 424 . . . . . . . . . . . 12 (𝑘 ∈ ω → (𝑁‘(𝑁𝑘)) = 𝑘)
4140fveq2d 5558 . . . . . . . . . . 11 (𝑘 ∈ ω → (𝐹‘(𝑁‘(𝑁𝑘))) = (𝐹𝑘))
4238, 41syl 14 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐹‘(𝑁‘(𝑁𝑘))) = (𝐹𝑘))
4337, 42eqtrd 2226 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺‘(𝑁𝑘)) = (𝐹𝑘))
44 simplrr 536 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))
4543, 44eqneltrd 2289 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ¬ (𝐺‘(𝑁𝑘)) ∈ (𝐹 “ suc (𝑁𝑚)))
46 simpr 110 . . . . . . . . 9 (((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) ∧ (𝐺‘(𝑁𝑘)) = (𝐺𝑖)) → (𝐺‘(𝑁𝑘)) = (𝐺𝑖))
4710fveq1i 5555 . . . . . . . . . . . 12 (𝐺𝑖) = ((𝐹𝑁)‘𝑖)
48 elfznn0 10180 . . . . . . . . . . . . . 14 (𝑖 ∈ (0...𝑚) → 𝑖 ∈ ℕ0)
4948adantl 277 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝑖 ∈ ℕ0)
50 fvco3 5628 . . . . . . . . . . . . 13 ((𝑁:ℕ0⟶ω ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑁)‘𝑖) = (𝐹‘(𝑁𝑖)))
5121, 49, 50sylancr 414 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝐹𝑁)‘𝑖) = (𝐹‘(𝑁𝑖)))
5247, 51eqtrid 2238 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺𝑖) = (𝐹‘(𝑁𝑖)))
53 elfzle2 10094 . . . . . . . . . . . . . . 15 (𝑖 ∈ (0...𝑚) → 𝑖𝑚)
5453adantl 277 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝑖𝑚)
55 0zd 9329 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 0 ∈ ℤ)
5621a1i 9 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝑁:ℕ0⟶ω)
5756, 49ffvelcdmd 5694 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁𝑖) ∈ ω)
5824ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁𝑚) ∈ ω)
5955, 2, 57, 58frec2uzled 10500 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝑁𝑖) ⊆ (𝑁𝑚) ↔ (𝑁‘(𝑁𝑖)) ≤ (𝑁‘(𝑁𝑚))))
60 f1ocnvfv2 5821 . . . . . . . . . . . . . . . . 17 ((𝑁:ω–1-1-onto→ℕ0𝑖 ∈ ℕ0) → (𝑁‘(𝑁𝑖)) = 𝑖)
613, 49, 60sylancr 414 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁‘(𝑁𝑖)) = 𝑖)
6223ad2antrr 488 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝑚 ∈ ℕ0)
63 f1ocnvfv2 5821 . . . . . . . . . . . . . . . . 17 ((𝑁:ω–1-1-onto→ℕ0𝑚 ∈ ℕ0) → (𝑁‘(𝑁𝑚)) = 𝑚)
643, 62, 63sylancr 414 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁‘(𝑁𝑚)) = 𝑚)
6561, 64breq12d 4042 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝑁‘(𝑁𝑖)) ≤ (𝑁‘(𝑁𝑚)) ↔ 𝑖𝑚))
6659, 65bitrd 188 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝑁𝑖) ⊆ (𝑁𝑚) ↔ 𝑖𝑚))
6754, 66mpbird 167 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁𝑖) ⊆ (𝑁𝑚))
68 nnsssuc 6555 . . . . . . . . . . . . . 14 (((𝑁𝑖) ∈ ω ∧ (𝑁𝑚) ∈ ω) → ((𝑁𝑖) ⊆ (𝑁𝑚) ↔ (𝑁𝑖) ∈ suc (𝑁𝑚)))
6957, 58, 68syl2anc 411 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝑁𝑖) ⊆ (𝑁𝑚) ↔ (𝑁𝑖) ∈ suc (𝑁𝑚)))
7067, 69mpbid 147 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁𝑖) ∈ suc (𝑁𝑚))
711ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝐹:ω–onto𝐴)
72 fof 5476 . . . . . . . . . . . . . . 15 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
7371, 72syl 14 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → 𝐹:ω⟶𝐴)
7473ffund 5407 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → Fun 𝐹)
7573fdmd 5410 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → dom 𝐹 = ω)
7657, 75eleqtrrd 2273 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝑁𝑖) ∈ dom 𝐹)
77 funfvima 5790 . . . . . . . . . . . . 13 ((Fun 𝐹 ∧ (𝑁𝑖) ∈ dom 𝐹) → ((𝑁𝑖) ∈ suc (𝑁𝑚) → (𝐹‘(𝑁𝑖)) ∈ (𝐹 “ suc (𝑁𝑚))))
7874, 76, 77syl2anc 411 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ((𝑁𝑖) ∈ suc (𝑁𝑚) → (𝐹‘(𝑁𝑖)) ∈ (𝐹 “ suc (𝑁𝑚))))
7970, 78mpd 13 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐹‘(𝑁𝑖)) ∈ (𝐹 “ suc (𝑁𝑚)))
8052, 79eqeltrd 2270 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺𝑖) ∈ (𝐹 “ suc (𝑁𝑚)))
8180adantr 276 . . . . . . . . 9 (((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) ∧ (𝐺‘(𝑁𝑘)) = (𝐺𝑖)) → (𝐺𝑖) ∈ (𝐹 “ suc (𝑁𝑚)))
8246, 81eqeltrd 2270 . . . . . . . 8 (((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) ∧ (𝐺‘(𝑁𝑘)) = (𝐺𝑖)) → (𝐺‘(𝑁𝑘)) ∈ (𝐹 “ suc (𝑁𝑚)))
8345, 82mtand 666 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → ¬ (𝐺‘(𝑁𝑘)) = (𝐺𝑖))
8483neqned 2371 . . . . . 6 ((((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) ∧ 𝑖 ∈ (0...𝑚)) → (𝐺‘(𝑁𝑘)) ≠ (𝐺𝑖))
8584ralrimiva 2567 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) → ∀𝑖 ∈ (0...𝑚)(𝐺‘(𝑁𝑘)) ≠ (𝐺𝑖))
86 fveq2 5554 . . . . . . . 8 (𝑗 = (𝑁𝑘) → (𝐺𝑗) = (𝐺‘(𝑁𝑘)))
8786neeq1d 2382 . . . . . . 7 (𝑗 = (𝑁𝑘) → ((𝐺𝑗) ≠ (𝐺𝑖) ↔ (𝐺‘(𝑁𝑘)) ≠ (𝐺𝑖)))
8887ralbidv 2494 . . . . . 6 (𝑗 = (𝑁𝑘) → (∀𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖) ↔ ∀𝑖 ∈ (0...𝑚)(𝐺‘(𝑁𝑘)) ≠ (𝐺𝑖)))
8988rspcev 2864 . . . . 5 (((𝑁𝑘) ∈ ℕ0 ∧ ∀𝑖 ∈ (0...𝑚)(𝐺‘(𝑁𝑘)) ≠ (𝐺𝑖)) → ∃𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖))
9032, 85, 89syl2anc 411 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ (𝑘 ∈ ω ∧ ¬ (𝐹𝑘) ∈ (𝐹 “ suc (𝑁𝑚)))) → ∃𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖))
9127, 90rexlimddv 2616 . . 3 ((𝜑𝑚 ∈ ℕ0) → ∃𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖))
9291ralrimiva 2567 . 2 (𝜑 → ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖))
9313, 92jca 306 1 (𝜑 → (𝐺:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wne 2364  wral 2472  wrex 2473  wss 3153   class class class wbr 4029  cmpt 4090  suc csuc 4396  ωcom 4622  ccnv 4658  dom cdm 4659  cima 4662  ccom 4663  Fun wfun 5248  wf 5250  ontowfo 5252  1-1-ontowf1o 5253  cfv 5254  (class class class)co 5918  freccfrec 6443  0cc0 7872  1c1 7873   + caddc 7875  cle 8055  0cn0 9240  cz 9317  ...cfz 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075
This theorem is referenced by:  ctinfom  12585
  Copyright terms: Public domain W3C validator