ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcjbr GIF version

Theorem dvcjbr 15213
Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 15214. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcj.f (𝜑𝐹:𝑋⟶ℂ)
dvcj.x (𝜑𝑋 ⊆ ℝ)
dvcj.c (𝜑𝐶 ∈ dom (ℝ D 𝐹))
Assertion
Ref Expression
dvcjbr (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))

Proof of Theorem dvcjbr
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-resscn 8019 . . . . 5 ℝ ⊆ ℂ
21a1i 9 . . . 4 (𝜑 → ℝ ⊆ ℂ)
3 dvcj.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
4 dvcj.x . . . 4 (𝜑𝑋 ⊆ ℝ)
5 eqid 2205 . . . . 5 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
65tgioo2cntop 15062 . . . 4 (topGen‘ran (,)) = ((MetOpen‘(abs ∘ − )) ↾t ℝ)
72, 3, 4, 6, 5dvbssntrcntop 15189 . . 3 (𝜑 → dom (ℝ D 𝐹) ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
8 dvcj.c . . 3 (𝜑𝐶 ∈ dom (ℝ D 𝐹))
97, 8sseldd 3194 . 2 (𝜑𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋))
104, 1sstrdi 3205 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
111a1i 9 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ℝ ⊆ ℂ)
12 simpl 109 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:𝑋⟶ℂ)
13 simpr 110 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝑋 ⊆ ℝ)
1411, 12, 13dvbss 15190 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D 𝐹) ⊆ 𝑋)
153, 4, 14syl2anc 411 . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) ⊆ 𝑋)
1615, 8sseldd 3194 . . . . . 6 (𝜑𝐶𝑋)
173, 10, 16dvlemap 15185 . . . . 5 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)) ∈ ℂ)
1817fmpttd 5737 . . . 4 (𝜑 → (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))):{𝑤𝑋𝑤 # 𝐶}⟶ℂ)
19 ssidd 3214 . . . 4 (𝜑 → ℂ ⊆ ℂ)
205cntoptopon 15037 . . . . 5 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
2120toponrestid 14526 . . . 4 (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ)
223fdmd 5434 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = 𝑋)
2322feq2d 5415 . . . . . . . . . . . 12 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:𝑋⟶ℂ))
243, 23mpbird 167 . . . . . . . . . . 11 (𝜑𝐹:dom 𝐹⟶ℂ)
2522, 4eqsstrd 3229 . . . . . . . . . . 11 (𝜑 → dom 𝐹 ⊆ ℝ)
26 cnex 8051 . . . . . . . . . . . 12 ℂ ∈ V
27 reex 8061 . . . . . . . . . . . 12 ℝ ∈ V
2826, 27elpm2 6769 . . . . . . . . . . 11 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
2924, 25, 28sylanbrc 417 . . . . . . . . . 10 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
30 dvfpm 15194 . . . . . . . . . 10 (𝐹 ∈ (ℂ ↑pm ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
3129, 30syl 14 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
3231ffund 5431 . . . . . . . 8 (𝜑 → Fun (ℝ D 𝐹))
33 funfvbrb 5695 . . . . . . . 8 (Fun (ℝ D 𝐹) → (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶)))
3432, 33syl 14 . . . . . . 7 (𝜑 → (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶)))
358, 34mpbid 147 . . . . . 6 (𝜑𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶))
36 eqid 2205 . . . . . . 7 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))
376, 5, 36, 2, 3, 4eldvap 15187 . . . . . 6 (𝜑 → (𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))))
3835, 37mpbid 147 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶)))
3938simprd 114 . . . 4 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))
40 cjcncf 15093 . . . . . 6 ∗ ∈ (ℂ–cn→ℂ)
415cncfcn1cntop 15099 . . . . . 6 (ℂ–cn→ℂ) = ((MetOpen‘(abs ∘ − )) Cn (MetOpen‘(abs ∘ − )))
4240, 41eleqtri 2280 . . . . 5 ∗ ∈ ((MetOpen‘(abs ∘ − )) Cn (MetOpen‘(abs ∘ − )))
4331, 8ffvelcdmd 5718 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ℂ)
44 unicntopcntop 15047 . . . . . 6 ℂ = (MetOpen‘(abs ∘ − ))
4544cncnpi 14733 . . . . 5 ((∗ ∈ ((MetOpen‘(abs ∘ − )) Cn (MetOpen‘(abs ∘ − ))) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ℂ) → ∗ ∈ (((MetOpen‘(abs ∘ − )) CnP (MetOpen‘(abs ∘ − )))‘((ℝ D 𝐹)‘𝐶)))
4642, 43, 45sylancr 414 . . . 4 (𝜑 → ∗ ∈ (((MetOpen‘(abs ∘ − )) CnP (MetOpen‘(abs ∘ − )))‘((ℝ D 𝐹)‘𝐶)))
4718, 19, 5, 21, 39, 46limccnpcntop 15180 . . 3 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶))
48 cjf 11191 . . . . . . 7 ∗:ℂ⟶ℂ
4948a1i 9 . . . . . 6 (𝜑 → ∗:ℂ⟶ℂ)
5049, 17cofmpt 5751 . . . . 5 (𝜑 → (∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))))
513adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐹:𝑋⟶ℂ)
52 elrabi 2926 . . . . . . . . . . 11 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑥𝑋)
5352adantl 277 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥𝑋)
5451, 53ffvelcdmd 5718 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝑥) ∈ ℂ)
553, 16ffvelcdmd 5718 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ ℂ)
5655adantr 276 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝐶) ∈ ℂ)
5754, 56subcld 8385 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑥) − (𝐹𝐶)) ∈ ℂ)
584sselda 3193 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑥 ∈ ℝ)
5952, 58sylan2 286 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥 ∈ ℝ)
604, 16sseldd 3194 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
6160adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐶 ∈ ℝ)
6259, 61resubcld 8455 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑥𝐶) ∈ ℝ)
6362recnd 8103 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑥𝐶) ∈ ℂ)
6459recnd 8103 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥 ∈ ℂ)
6561recnd 8103 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐶 ∈ ℂ)
66 breq1 4048 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝑤 # 𝐶𝑥 # 𝐶))
6766elrab 2929 . . . . . . . . . . 11 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↔ (𝑥𝑋𝑥 # 𝐶))
6867simprbi 275 . . . . . . . . . 10 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑥 # 𝐶)
6968adantl 277 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥 # 𝐶)
7064, 65, 69subap0d 8719 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑥𝐶) # 0)
7157, 63, 70cjdivapd 11312 . . . . . . 7 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))))
72 cjsub 11236 . . . . . . . . . 10 (((𝐹𝑥) ∈ ℂ ∧ (𝐹𝐶) ∈ ℂ) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
7354, 56, 72syl2anc 411 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
74 fvco3 5652 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑥𝑋) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
753, 52, 74syl2an 289 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
76 fvco3 5652 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝐶𝑋) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
773, 16, 76syl2anc 411 . . . . . . . . . . 11 (𝜑 → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
7877adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
7975, 78oveq12d 5964 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
8073, 79eqtr4d 2241 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)))
8162cjred 11315 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘(𝑥𝐶)) = (𝑥𝐶))
8280, 81oveq12d 5964 . . . . . . 7 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
8371, 82eqtrd 2238 . . . . . 6 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
8483mpteq2dva 4135 . . . . 5 (𝜑 → (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
8550, 84eqtrd 2238 . . . 4 (𝜑 → (∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
8685oveq1d 5961 . . 3 (𝜑 → ((∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶) = ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
8747, 86eleqtrd 2284 . 2 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
88 eqid 2205 . . 3 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
89 fco 5443 . . . 4 ((∗:ℂ⟶ℂ ∧ 𝐹:𝑋⟶ℂ) → (∗ ∘ 𝐹):𝑋⟶ℂ)
9048, 3, 89sylancr 414 . . 3 (𝜑 → (∗ ∘ 𝐹):𝑋⟶ℂ)
916, 5, 88, 2, 90, 4eldvap 15187 . 2 (𝜑 → (𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))))
929, 87, 91mpbir2and 947 1 (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  {crab 2488  wss 3166   class class class wbr 4045  cmpt 4106  dom cdm 4676  ran crn 4677  ccom 4680  Fun wfun 5266  wf 5268  cfv 5272  (class class class)co 5946  pm cpm 6738  cc 7925  cr 7926  cmin 8245   # cap 8656   / cdiv 8747  (,)cioo 10012  ccj 11183  abscabs 11341  topGenctg 13119  MetOpencmopn 14336  intcnt 14598   Cn ccn 14690   CnP ccnp 14691  cnccncf 15075   lim climc 15159   D cdv 15160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-map 6739  df-pm 6740  df-sup 7088  df-inf 7089  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-xneg 9896  df-xadd 9897  df-ioo 10016  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-rest 13106  df-topgen 13125  df-psmet 14338  df-xmet 14339  df-met 14340  df-bl 14341  df-mopn 14342  df-top 14503  df-topon 14516  df-bases 14548  df-ntr 14601  df-cn 14693  df-cnp 14694  df-cncf 15076  df-limced 15161  df-dvap 15162
This theorem is referenced by:  dvcj  15214
  Copyright terms: Public domain W3C validator