Step | Hyp | Ref
| Expression |
1 | | ax-resscn 7845 |
. . . . 5
⊢ ℝ
⊆ ℂ |
2 | 1 | a1i 9 |
. . . 4
⊢ (𝜑 → ℝ ⊆
ℂ) |
3 | | dvcj.f |
. . . 4
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
4 | | dvcj.x |
. . . 4
⊢ (𝜑 → 𝑋 ⊆ ℝ) |
5 | | eqid 2165 |
. . . . 5
⊢
(MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘
− )) |
6 | 5 | tgioo2cntop 13189 |
. . . 4
⊢
(topGen‘ran (,)) = ((MetOpen‘(abs ∘ − ))
↾t ℝ) |
7 | 2, 3, 4, 6, 5 | dvbssntrcntop 13293 |
. . 3
⊢ (𝜑 → dom (ℝ D 𝐹) ⊆
((int‘(topGen‘ran (,)))‘𝑋)) |
8 | | dvcj.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ dom (ℝ D 𝐹)) |
9 | 7, 8 | sseldd 3143 |
. 2
⊢ (𝜑 → 𝐶 ∈ ((int‘(topGen‘ran
(,)))‘𝑋)) |
10 | 4, 1 | sstrdi 3154 |
. . . . . 6
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
11 | 1 | a1i 9 |
. . . . . . . . 9
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ℝ ⊆
ℂ) |
12 | | simpl 108 |
. . . . . . . . 9
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:𝑋⟶ℂ) |
13 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝑋 ⊆ ℝ) |
14 | 11, 12, 13 | dvbss 13294 |
. . . . . . . 8
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D
𝐹) ⊆ 𝑋) |
15 | 3, 4, 14 | syl2anc 409 |
. . . . . . 7
⊢ (𝜑 → dom (ℝ D 𝐹) ⊆ 𝑋) |
16 | 15, 8 | sseldd 3143 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑋) |
17 | 3, 10, 16 | dvlemap 13289 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶)) ∈ ℂ) |
18 | 17 | fmpttd 5640 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶))):{𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}⟶ℂ) |
19 | | ssidd 3163 |
. . . 4
⊢ (𝜑 → ℂ ⊆
ℂ) |
20 | 5 | cntoptopon 13172 |
. . . . 5
⊢
(MetOpen‘(abs ∘ − )) ∈
(TopOn‘ℂ) |
21 | 20 | toponrestid 12659 |
. . . 4
⊢
(MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘
− )) ↾t ℂ) |
22 | 3 | fdmd 5344 |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom 𝐹 = 𝑋) |
23 | 22 | feq2d 5325 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:𝑋⟶ℂ)) |
24 | 3, 23 | mpbird 166 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) |
25 | 22, 4 | eqsstrd 3178 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐹 ⊆ ℝ) |
26 | | cnex 7877 |
. . . . . . . . . . . 12
⊢ ℂ
∈ V |
27 | | reex 7887 |
. . . . . . . . . . . 12
⊢ ℝ
∈ V |
28 | 26, 27 | elpm2 6646 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (ℂ
↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
29 | 24, 25, 28 | sylanbrc 414 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
30 | | dvfpm 13298 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (ℂ
↑pm ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ) |
31 | 29, 30 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ) |
32 | 31 | ffund 5341 |
. . . . . . . 8
⊢ (𝜑 → Fun (ℝ D 𝐹)) |
33 | | funfvbrb 5598 |
. . . . . . . 8
⊢ (Fun
(ℝ D 𝐹) → (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶))) |
34 | 32, 33 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶))) |
35 | 8, 34 | mpbid 146 |
. . . . . 6
⊢ (𝜑 → 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶)) |
36 | | eqid 2165 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶))) = (𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶))) |
37 | 6, 5, 36, 2, 3, 4 | eldvap 13291 |
. . . . . 6
⊢ (𝜑 → (𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶) ↔ (𝐶 ∈ ((int‘(topGen‘ran
(,)))‘𝑋) ∧
((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶))) limℂ 𝐶)))) |
38 | 35, 37 | mpbid 146 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ ((int‘(topGen‘ran
(,)))‘𝑋) ∧
((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶))) limℂ 𝐶))) |
39 | 38 | simprd 113 |
. . . 4
⊢ (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶))) limℂ 𝐶)) |
40 | | cjcncf 13215 |
. . . . . 6
⊢ ∗
∈ (ℂ–cn→ℂ) |
41 | 5 | cncfcn1cntop 13221 |
. . . . . 6
⊢
(ℂ–cn→ℂ) =
((MetOpen‘(abs ∘ − )) Cn (MetOpen‘(abs ∘ −
))) |
42 | 40, 41 | eleqtri 2241 |
. . . . 5
⊢ ∗
∈ ((MetOpen‘(abs ∘ − )) Cn (MetOpen‘(abs ∘
− ))) |
43 | 31, 8 | ffvelrnd 5621 |
. . . . 5
⊢ (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ℂ) |
44 | | unicntopcntop 13176 |
. . . . . 6
⊢ ℂ =
∪ (MetOpen‘(abs ∘ −
)) |
45 | 44 | cncnpi 12868 |
. . . . 5
⊢
((∗ ∈ ((MetOpen‘(abs ∘ − )) Cn
(MetOpen‘(abs ∘ − ))) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ℂ) → ∗ ∈
(((MetOpen‘(abs ∘ − )) CnP (MetOpen‘(abs ∘
− )))‘((ℝ D 𝐹)‘𝐶))) |
46 | 42, 43, 45 | sylancr 411 |
. . . 4
⊢ (𝜑 → ∗ ∈
(((MetOpen‘(abs ∘ − )) CnP (MetOpen‘(abs ∘
− )))‘((ℝ D 𝐹)‘𝐶))) |
47 | 18, 19, 5, 21, 39, 46 | limccnpcntop 13284 |
. . 3
⊢ (𝜑 → (∗‘((ℝ
D 𝐹)‘𝐶)) ∈ ((∗ ∘
(𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶)))) limℂ 𝐶)) |
48 | | cjf 10789 |
. . . . . . 7
⊢
∗:ℂ⟶ℂ |
49 | 48 | a1i 9 |
. . . . . 6
⊢ (𝜑 →
∗:ℂ⟶ℂ) |
50 | 49, 17 | cofmpt 5654 |
. . . . 5
⊢ (𝜑 → (∗ ∘ (𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶)))) = (𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (∗‘(((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶))))) |
51 | 3 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐹:𝑋⟶ℂ) |
52 | | elrabi 2879 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} → 𝑥 ∈ 𝑋) |
53 | 52 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑥 ∈ 𝑋) |
54 | 51, 53 | ffvelrnd 5621 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐹‘𝑥) ∈ ℂ) |
55 | 3, 16 | ffvelrnd 5621 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝐶) ∈ ℂ) |
56 | 55 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐹‘𝐶) ∈ ℂ) |
57 | 54, 56 | subcld 8209 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹‘𝑥) − (𝐹‘𝐶)) ∈ ℂ) |
58 | 4 | sselda 3142 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ℝ) |
59 | 52, 58 | sylan2 284 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑥 ∈ ℝ) |
60 | 4, 16 | sseldd 3143 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ ℝ) |
61 | 60 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐶 ∈ ℝ) |
62 | 59, 61 | resubcld 8279 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝑥 − 𝐶) ∈ ℝ) |
63 | 62 | recnd 7927 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝑥 − 𝐶) ∈ ℂ) |
64 | 59 | recnd 7927 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑥 ∈ ℂ) |
65 | 61 | recnd 7927 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐶 ∈ ℂ) |
66 | | breq1 3985 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → (𝑤 # 𝐶 ↔ 𝑥 # 𝐶)) |
67 | 66 | elrab 2882 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 # 𝐶)) |
68 | 67 | simprbi 273 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} → 𝑥 # 𝐶) |
69 | 68 | adantl 275 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑥 # 𝐶) |
70 | 64, 65, 69 | subap0d 8542 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝑥 − 𝐶) # 0) |
71 | 57, 63, 70 | cjdivapd 10910 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (∗‘(((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶))) = ((∗‘((𝐹‘𝑥) − (𝐹‘𝐶))) / (∗‘(𝑥 − 𝐶)))) |
72 | | cjsub 10834 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑥) ∈ ℂ ∧ (𝐹‘𝐶) ∈ ℂ) →
(∗‘((𝐹‘𝑥) − (𝐹‘𝐶))) = ((∗‘(𝐹‘𝑥)) − (∗‘(𝐹‘𝐶)))) |
73 | 54, 56, 72 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (∗‘((𝐹‘𝑥) − (𝐹‘𝐶))) = ((∗‘(𝐹‘𝑥)) − (∗‘(𝐹‘𝐶)))) |
74 | | fvco3 5557 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑥 ∈ 𝑋) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹‘𝑥))) |
75 | 3, 52, 74 | syl2an 287 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹‘𝑥))) |
76 | | fvco3 5557 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝐶 ∈ 𝑋) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹‘𝐶))) |
77 | 3, 16, 76 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (𝜑 → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹‘𝐶))) |
78 | 77 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹‘𝐶))) |
79 | 75, 78 | oveq12d 5860 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) = ((∗‘(𝐹‘𝑥)) − (∗‘(𝐹‘𝐶)))) |
80 | 73, 79 | eqtr4d 2201 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (∗‘((𝐹‘𝑥) − (𝐹‘𝐶))) = (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶))) |
81 | 62 | cjred 10913 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (∗‘(𝑥 − 𝐶)) = (𝑥 − 𝐶)) |
82 | 80, 81 | oveq12d 5860 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((∗‘((𝐹‘𝑥) − (𝐹‘𝐶))) / (∗‘(𝑥 − 𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥 − 𝐶))) |
83 | 71, 82 | eqtrd 2198 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (∗‘(((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥 − 𝐶))) |
84 | 83 | mpteq2dva 4072 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (∗‘(((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶)))) = (𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥 − 𝐶)))) |
85 | 50, 84 | eqtrd 2198 |
. . . 4
⊢ (𝜑 → (∗ ∘ (𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶)))) = (𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥 − 𝐶)))) |
86 | 85 | oveq1d 5857 |
. . 3
⊢ (𝜑 → ((∗ ∘ (𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶)))) limℂ 𝐶) = ((𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥 − 𝐶))) limℂ 𝐶)) |
87 | 47, 86 | eleqtrd 2245 |
. 2
⊢ (𝜑 → (∗‘((ℝ
D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥 − 𝐶))) limℂ 𝐶)) |
88 | | eqid 2165 |
. . 3
⊢ (𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥 − 𝐶))) = (𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥 − 𝐶))) |
89 | | fco 5353 |
. . . 4
⊢
((∗:ℂ⟶ℂ ∧ 𝐹:𝑋⟶ℂ) → (∗ ∘
𝐹):𝑋⟶ℂ) |
90 | 48, 3, 89 | sylancr 411 |
. . 3
⊢ (𝜑 → (∗ ∘ 𝐹):𝑋⟶ℂ) |
91 | 6, 5, 88, 2, 90, 4 | eldvap 13291 |
. 2
⊢ (𝜑 → (𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D
𝐹)‘𝐶)) ↔ (𝐶 ∈ ((int‘(topGen‘ran
(,)))‘𝑋) ∧
(∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥 − 𝐶))) limℂ 𝐶)))) |
92 | 9, 87, 91 | mpbir2and 934 |
1
⊢ (𝜑 → 𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D
𝐹)‘𝐶))) |