ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcjbr GIF version

Theorem dvcjbr 14857
Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 14858. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcj.f (𝜑𝐹:𝑋⟶ℂ)
dvcj.x (𝜑𝑋 ⊆ ℝ)
dvcj.c (𝜑𝐶 ∈ dom (ℝ D 𝐹))
Assertion
Ref Expression
dvcjbr (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))

Proof of Theorem dvcjbr
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-resscn 7964 . . . . 5 ℝ ⊆ ℂ
21a1i 9 . . . 4 (𝜑 → ℝ ⊆ ℂ)
3 dvcj.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
4 dvcj.x . . . 4 (𝜑𝑋 ⊆ ℝ)
5 eqid 2193 . . . . 5 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
65tgioo2cntop 14717 . . . 4 (topGen‘ran (,)) = ((MetOpen‘(abs ∘ − )) ↾t ℝ)
72, 3, 4, 6, 5dvbssntrcntop 14838 . . 3 (𝜑 → dom (ℝ D 𝐹) ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
8 dvcj.c . . 3 (𝜑𝐶 ∈ dom (ℝ D 𝐹))
97, 8sseldd 3180 . 2 (𝜑𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋))
104, 1sstrdi 3191 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
111a1i 9 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ℝ ⊆ ℂ)
12 simpl 109 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:𝑋⟶ℂ)
13 simpr 110 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝑋 ⊆ ℝ)
1411, 12, 13dvbss 14839 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D 𝐹) ⊆ 𝑋)
153, 4, 14syl2anc 411 . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) ⊆ 𝑋)
1615, 8sseldd 3180 . . . . . 6 (𝜑𝐶𝑋)
173, 10, 16dvlemap 14834 . . . . 5 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)) ∈ ℂ)
1817fmpttd 5713 . . . 4 (𝜑 → (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))):{𝑤𝑋𝑤 # 𝐶}⟶ℂ)
19 ssidd 3200 . . . 4 (𝜑 → ℂ ⊆ ℂ)
205cntoptopon 14700 . . . . 5 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
2120toponrestid 14189 . . . 4 (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ)
223fdmd 5410 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = 𝑋)
2322feq2d 5391 . . . . . . . . . . . 12 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:𝑋⟶ℂ))
243, 23mpbird 167 . . . . . . . . . . 11 (𝜑𝐹:dom 𝐹⟶ℂ)
2522, 4eqsstrd 3215 . . . . . . . . . . 11 (𝜑 → dom 𝐹 ⊆ ℝ)
26 cnex 7996 . . . . . . . . . . . 12 ℂ ∈ V
27 reex 8006 . . . . . . . . . . . 12 ℝ ∈ V
2826, 27elpm2 6734 . . . . . . . . . . 11 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
2924, 25, 28sylanbrc 417 . . . . . . . . . 10 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
30 dvfpm 14843 . . . . . . . . . 10 (𝐹 ∈ (ℂ ↑pm ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
3129, 30syl 14 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
3231ffund 5407 . . . . . . . 8 (𝜑 → Fun (ℝ D 𝐹))
33 funfvbrb 5671 . . . . . . . 8 (Fun (ℝ D 𝐹) → (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶)))
3432, 33syl 14 . . . . . . 7 (𝜑 → (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶)))
358, 34mpbid 147 . . . . . 6 (𝜑𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶))
36 eqid 2193 . . . . . . 7 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))
376, 5, 36, 2, 3, 4eldvap 14836 . . . . . 6 (𝜑 → (𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))))
3835, 37mpbid 147 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶)))
3938simprd 114 . . . 4 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))
40 cjcncf 14743 . . . . . 6 ∗ ∈ (ℂ–cn→ℂ)
415cncfcn1cntop 14749 . . . . . 6 (ℂ–cn→ℂ) = ((MetOpen‘(abs ∘ − )) Cn (MetOpen‘(abs ∘ − )))
4240, 41eleqtri 2268 . . . . 5 ∗ ∈ ((MetOpen‘(abs ∘ − )) Cn (MetOpen‘(abs ∘ − )))
4331, 8ffvelcdmd 5694 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ℂ)
44 unicntopcntop 14704 . . . . . 6 ℂ = (MetOpen‘(abs ∘ − ))
4544cncnpi 14396 . . . . 5 ((∗ ∈ ((MetOpen‘(abs ∘ − )) Cn (MetOpen‘(abs ∘ − ))) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ℂ) → ∗ ∈ (((MetOpen‘(abs ∘ − )) CnP (MetOpen‘(abs ∘ − )))‘((ℝ D 𝐹)‘𝐶)))
4642, 43, 45sylancr 414 . . . 4 (𝜑 → ∗ ∈ (((MetOpen‘(abs ∘ − )) CnP (MetOpen‘(abs ∘ − )))‘((ℝ D 𝐹)‘𝐶)))
4718, 19, 5, 21, 39, 46limccnpcntop 14829 . . 3 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶))
48 cjf 10991 . . . . . . 7 ∗:ℂ⟶ℂ
4948a1i 9 . . . . . 6 (𝜑 → ∗:ℂ⟶ℂ)
5049, 17cofmpt 5727 . . . . 5 (𝜑 → (∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))))
513adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐹:𝑋⟶ℂ)
52 elrabi 2913 . . . . . . . . . . 11 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑥𝑋)
5352adantl 277 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥𝑋)
5451, 53ffvelcdmd 5694 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝑥) ∈ ℂ)
553, 16ffvelcdmd 5694 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ ℂ)
5655adantr 276 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝐶) ∈ ℂ)
5754, 56subcld 8330 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑥) − (𝐹𝐶)) ∈ ℂ)
584sselda 3179 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑥 ∈ ℝ)
5952, 58sylan2 286 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥 ∈ ℝ)
604, 16sseldd 3180 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
6160adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐶 ∈ ℝ)
6259, 61resubcld 8400 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑥𝐶) ∈ ℝ)
6362recnd 8048 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑥𝐶) ∈ ℂ)
6459recnd 8048 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥 ∈ ℂ)
6561recnd 8048 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐶 ∈ ℂ)
66 breq1 4032 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝑤 # 𝐶𝑥 # 𝐶))
6766elrab 2916 . . . . . . . . . . 11 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↔ (𝑥𝑋𝑥 # 𝐶))
6867simprbi 275 . . . . . . . . . 10 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑥 # 𝐶)
6968adantl 277 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥 # 𝐶)
7064, 65, 69subap0d 8663 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑥𝐶) # 0)
7157, 63, 70cjdivapd 11112 . . . . . . 7 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))))
72 cjsub 11036 . . . . . . . . . 10 (((𝐹𝑥) ∈ ℂ ∧ (𝐹𝐶) ∈ ℂ) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
7354, 56, 72syl2anc 411 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
74 fvco3 5628 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑥𝑋) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
753, 52, 74syl2an 289 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
76 fvco3 5628 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝐶𝑋) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
773, 16, 76syl2anc 411 . . . . . . . . . . 11 (𝜑 → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
7877adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
7975, 78oveq12d 5936 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
8073, 79eqtr4d 2229 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)))
8162cjred 11115 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘(𝑥𝐶)) = (𝑥𝐶))
8280, 81oveq12d 5936 . . . . . . 7 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
8371, 82eqtrd 2226 . . . . . 6 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
8483mpteq2dva 4119 . . . . 5 (𝜑 → (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
8550, 84eqtrd 2226 . . . 4 (𝜑 → (∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
8685oveq1d 5933 . . 3 (𝜑 → ((∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶) = ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
8747, 86eleqtrd 2272 . 2 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
88 eqid 2193 . . 3 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
89 fco 5419 . . . 4 ((∗:ℂ⟶ℂ ∧ 𝐹:𝑋⟶ℂ) → (∗ ∘ 𝐹):𝑋⟶ℂ)
9048, 3, 89sylancr 414 . . 3 (𝜑 → (∗ ∘ 𝐹):𝑋⟶ℂ)
916, 5, 88, 2, 90, 4eldvap 14836 . 2 (𝜑 → (𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))))
929, 87, 91mpbir2and 946 1 (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  {crab 2476  wss 3153   class class class wbr 4029  cmpt 4090  dom cdm 4659  ran crn 4660  ccom 4663  Fun wfun 5248  wf 5250  cfv 5254  (class class class)co 5918  pm cpm 6703  cc 7870  cr 7871  cmin 8190   # cap 8600   / cdiv 8691  (,)cioo 9954  ccj 10983  abscabs 11141  topGenctg 12865  MetOpencmopn 14037  intcnt 14261   Cn ccn 14353   CnP ccnp 14354  cnccncf 14725   lim climc 14808   D cdv 14809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-map 6704  df-pm 6705  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-xneg 9838  df-xadd 9839  df-ioo 9958  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-rest 12852  df-topgen 12871  df-psmet 14039  df-xmet 14040  df-met 14041  df-bl 14042  df-mopn 14043  df-top 14166  df-topon 14179  df-bases 14211  df-ntr 14264  df-cn 14356  df-cnp 14357  df-cncf 14726  df-limced 14810  df-dvap 14811
This theorem is referenced by:  dvcj  14858
  Copyright terms: Public domain W3C validator