ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcjbr GIF version

Theorem dvcjbr 13839
Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 13840. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcj.f (𝜑𝐹:𝑋⟶ℂ)
dvcj.x (𝜑𝑋 ⊆ ℝ)
dvcj.c (𝜑𝐶 ∈ dom (ℝ D 𝐹))
Assertion
Ref Expression
dvcjbr (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))

Proof of Theorem dvcjbr
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-resscn 7894 . . . . 5 ℝ ⊆ ℂ
21a1i 9 . . . 4 (𝜑 → ℝ ⊆ ℂ)
3 dvcj.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
4 dvcj.x . . . 4 (𝜑𝑋 ⊆ ℝ)
5 eqid 2177 . . . . 5 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
65tgioo2cntop 13716 . . . 4 (topGen‘ran (,)) = ((MetOpen‘(abs ∘ − )) ↾t ℝ)
72, 3, 4, 6, 5dvbssntrcntop 13820 . . 3 (𝜑 → dom (ℝ D 𝐹) ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
8 dvcj.c . . 3 (𝜑𝐶 ∈ dom (ℝ D 𝐹))
97, 8sseldd 3156 . 2 (𝜑𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋))
104, 1sstrdi 3167 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
111a1i 9 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ℝ ⊆ ℂ)
12 simpl 109 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:𝑋⟶ℂ)
13 simpr 110 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝑋 ⊆ ℝ)
1411, 12, 13dvbss 13821 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D 𝐹) ⊆ 𝑋)
153, 4, 14syl2anc 411 . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) ⊆ 𝑋)
1615, 8sseldd 3156 . . . . . 6 (𝜑𝐶𝑋)
173, 10, 16dvlemap 13816 . . . . 5 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)) ∈ ℂ)
1817fmpttd 5667 . . . 4 (𝜑 → (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))):{𝑤𝑋𝑤 # 𝐶}⟶ℂ)
19 ssidd 3176 . . . 4 (𝜑 → ℂ ⊆ ℂ)
205cntoptopon 13699 . . . . 5 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
2120toponrestid 13186 . . . 4 (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ)
223fdmd 5368 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = 𝑋)
2322feq2d 5349 . . . . . . . . . . . 12 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:𝑋⟶ℂ))
243, 23mpbird 167 . . . . . . . . . . 11 (𝜑𝐹:dom 𝐹⟶ℂ)
2522, 4eqsstrd 3191 . . . . . . . . . . 11 (𝜑 → dom 𝐹 ⊆ ℝ)
26 cnex 7926 . . . . . . . . . . . 12 ℂ ∈ V
27 reex 7936 . . . . . . . . . . . 12 ℝ ∈ V
2826, 27elpm2 6674 . . . . . . . . . . 11 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
2924, 25, 28sylanbrc 417 . . . . . . . . . 10 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
30 dvfpm 13825 . . . . . . . . . 10 (𝐹 ∈ (ℂ ↑pm ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
3129, 30syl 14 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
3231ffund 5365 . . . . . . . 8 (𝜑 → Fun (ℝ D 𝐹))
33 funfvbrb 5625 . . . . . . . 8 (Fun (ℝ D 𝐹) → (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶)))
3432, 33syl 14 . . . . . . 7 (𝜑 → (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶)))
358, 34mpbid 147 . . . . . 6 (𝜑𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶))
36 eqid 2177 . . . . . . 7 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))
376, 5, 36, 2, 3, 4eldvap 13818 . . . . . 6 (𝜑 → (𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))))
3835, 37mpbid 147 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶)))
3938simprd 114 . . . 4 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))
40 cjcncf 13742 . . . . . 6 ∗ ∈ (ℂ–cn→ℂ)
415cncfcn1cntop 13748 . . . . . 6 (ℂ–cn→ℂ) = ((MetOpen‘(abs ∘ − )) Cn (MetOpen‘(abs ∘ − )))
4240, 41eleqtri 2252 . . . . 5 ∗ ∈ ((MetOpen‘(abs ∘ − )) Cn (MetOpen‘(abs ∘ − )))
4331, 8ffvelcdmd 5648 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ℂ)
44 unicntopcntop 13703 . . . . . 6 ℂ = (MetOpen‘(abs ∘ − ))
4544cncnpi 13395 . . . . 5 ((∗ ∈ ((MetOpen‘(abs ∘ − )) Cn (MetOpen‘(abs ∘ − ))) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ℂ) → ∗ ∈ (((MetOpen‘(abs ∘ − )) CnP (MetOpen‘(abs ∘ − )))‘((ℝ D 𝐹)‘𝐶)))
4642, 43, 45sylancr 414 . . . 4 (𝜑 → ∗ ∈ (((MetOpen‘(abs ∘ − )) CnP (MetOpen‘(abs ∘ − )))‘((ℝ D 𝐹)‘𝐶)))
4718, 19, 5, 21, 39, 46limccnpcntop 13811 . . 3 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶))
48 cjf 10840 . . . . . . 7 ∗:ℂ⟶ℂ
4948a1i 9 . . . . . 6 (𝜑 → ∗:ℂ⟶ℂ)
5049, 17cofmpt 5681 . . . . 5 (𝜑 → (∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))))
513adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐹:𝑋⟶ℂ)
52 elrabi 2890 . . . . . . . . . . 11 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑥𝑋)
5352adantl 277 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥𝑋)
5451, 53ffvelcdmd 5648 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝑥) ∈ ℂ)
553, 16ffvelcdmd 5648 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ ℂ)
5655adantr 276 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝐶) ∈ ℂ)
5754, 56subcld 8258 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑥) − (𝐹𝐶)) ∈ ℂ)
584sselda 3155 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑥 ∈ ℝ)
5952, 58sylan2 286 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥 ∈ ℝ)
604, 16sseldd 3156 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
6160adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐶 ∈ ℝ)
6259, 61resubcld 8328 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑥𝐶) ∈ ℝ)
6362recnd 7976 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑥𝐶) ∈ ℂ)
6459recnd 7976 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥 ∈ ℂ)
6561recnd 7976 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐶 ∈ ℂ)
66 breq1 4003 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝑤 # 𝐶𝑥 # 𝐶))
6766elrab 2893 . . . . . . . . . . 11 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↔ (𝑥𝑋𝑥 # 𝐶))
6867simprbi 275 . . . . . . . . . 10 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑥 # 𝐶)
6968adantl 277 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥 # 𝐶)
7064, 65, 69subap0d 8591 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑥𝐶) # 0)
7157, 63, 70cjdivapd 10961 . . . . . . 7 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))))
72 cjsub 10885 . . . . . . . . . 10 (((𝐹𝑥) ∈ ℂ ∧ (𝐹𝐶) ∈ ℂ) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
7354, 56, 72syl2anc 411 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
74 fvco3 5583 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑥𝑋) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
753, 52, 74syl2an 289 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
76 fvco3 5583 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝐶𝑋) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
773, 16, 76syl2anc 411 . . . . . . . . . . 11 (𝜑 → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
7877adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
7975, 78oveq12d 5887 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
8073, 79eqtr4d 2213 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)))
8162cjred 10964 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘(𝑥𝐶)) = (𝑥𝐶))
8280, 81oveq12d 5887 . . . . . . 7 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
8371, 82eqtrd 2210 . . . . . 6 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
8483mpteq2dva 4090 . . . . 5 (𝜑 → (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
8550, 84eqtrd 2210 . . . 4 (𝜑 → (∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
8685oveq1d 5884 . . 3 (𝜑 → ((∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶) = ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
8747, 86eleqtrd 2256 . 2 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
88 eqid 2177 . . 3 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
89 fco 5377 . . . 4 ((∗:ℂ⟶ℂ ∧ 𝐹:𝑋⟶ℂ) → (∗ ∘ 𝐹):𝑋⟶ℂ)
9048, 3, 89sylancr 414 . . 3 (𝜑 → (∗ ∘ 𝐹):𝑋⟶ℂ)
916, 5, 88, 2, 90, 4eldvap 13818 . 2 (𝜑 → (𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))))
929, 87, 91mpbir2and 944 1 (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  {crab 2459  wss 3129   class class class wbr 4000  cmpt 4061  dom cdm 4623  ran crn 4624  ccom 4627  Fun wfun 5206  wf 5208  cfv 5212  (class class class)co 5869  pm cpm 6643  cc 7800  cr 7801  cmin 8118   # cap 8528   / cdiv 8618  (,)cioo 9875  ccj 10832  abscabs 10990  topGenctg 12651  MetOpencmopn 13152  intcnt 13260   Cn ccn 13352   CnP ccnp 13353  cnccncf 13724   lim climc 13790   D cdv 13791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-map 6644  df-pm 6645  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-xneg 9759  df-xadd 9760  df-ioo 9879  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-rest 12638  df-topgen 12657  df-psmet 13154  df-xmet 13155  df-met 13156  df-bl 13157  df-mopn 13158  df-top 13163  df-topon 13176  df-bases 13208  df-ntr 13263  df-cn 13355  df-cnp 13356  df-cncf 13725  df-limced 13792  df-dvap 13793
This theorem is referenced by:  dvcj  13840
  Copyright terms: Public domain W3C validator