ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcjbr GIF version

Theorem dvcjbr 13312
Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 13313. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcj.f (𝜑𝐹:𝑋⟶ℂ)
dvcj.x (𝜑𝑋 ⊆ ℝ)
dvcj.c (𝜑𝐶 ∈ dom (ℝ D 𝐹))
Assertion
Ref Expression
dvcjbr (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))

Proof of Theorem dvcjbr
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-resscn 7845 . . . . 5 ℝ ⊆ ℂ
21a1i 9 . . . 4 (𝜑 → ℝ ⊆ ℂ)
3 dvcj.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
4 dvcj.x . . . 4 (𝜑𝑋 ⊆ ℝ)
5 eqid 2165 . . . . 5 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
65tgioo2cntop 13189 . . . 4 (topGen‘ran (,)) = ((MetOpen‘(abs ∘ − )) ↾t ℝ)
72, 3, 4, 6, 5dvbssntrcntop 13293 . . 3 (𝜑 → dom (ℝ D 𝐹) ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
8 dvcj.c . . 3 (𝜑𝐶 ∈ dom (ℝ D 𝐹))
97, 8sseldd 3143 . 2 (𝜑𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋))
104, 1sstrdi 3154 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
111a1i 9 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ℝ ⊆ ℂ)
12 simpl 108 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:𝑋⟶ℂ)
13 simpr 109 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝑋 ⊆ ℝ)
1411, 12, 13dvbss 13294 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D 𝐹) ⊆ 𝑋)
153, 4, 14syl2anc 409 . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) ⊆ 𝑋)
1615, 8sseldd 3143 . . . . . 6 (𝜑𝐶𝑋)
173, 10, 16dvlemap 13289 . . . . 5 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)) ∈ ℂ)
1817fmpttd 5640 . . . 4 (𝜑 → (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))):{𝑤𝑋𝑤 # 𝐶}⟶ℂ)
19 ssidd 3163 . . . 4 (𝜑 → ℂ ⊆ ℂ)
205cntoptopon 13172 . . . . 5 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
2120toponrestid 12659 . . . 4 (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ)
223fdmd 5344 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = 𝑋)
2322feq2d 5325 . . . . . . . . . . . 12 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:𝑋⟶ℂ))
243, 23mpbird 166 . . . . . . . . . . 11 (𝜑𝐹:dom 𝐹⟶ℂ)
2522, 4eqsstrd 3178 . . . . . . . . . . 11 (𝜑 → dom 𝐹 ⊆ ℝ)
26 cnex 7877 . . . . . . . . . . . 12 ℂ ∈ V
27 reex 7887 . . . . . . . . . . . 12 ℝ ∈ V
2826, 27elpm2 6646 . . . . . . . . . . 11 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
2924, 25, 28sylanbrc 414 . . . . . . . . . 10 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
30 dvfpm 13298 . . . . . . . . . 10 (𝐹 ∈ (ℂ ↑pm ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
3129, 30syl 14 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
3231ffund 5341 . . . . . . . 8 (𝜑 → Fun (ℝ D 𝐹))
33 funfvbrb 5598 . . . . . . . 8 (Fun (ℝ D 𝐹) → (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶)))
3432, 33syl 14 . . . . . . 7 (𝜑 → (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶)))
358, 34mpbid 146 . . . . . 6 (𝜑𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶))
36 eqid 2165 . . . . . . 7 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))
376, 5, 36, 2, 3, 4eldvap 13291 . . . . . 6 (𝜑 → (𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))))
3835, 37mpbid 146 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶)))
3938simprd 113 . . . 4 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))
40 cjcncf 13215 . . . . . 6 ∗ ∈ (ℂ–cn→ℂ)
415cncfcn1cntop 13221 . . . . . 6 (ℂ–cn→ℂ) = ((MetOpen‘(abs ∘ − )) Cn (MetOpen‘(abs ∘ − )))
4240, 41eleqtri 2241 . . . . 5 ∗ ∈ ((MetOpen‘(abs ∘ − )) Cn (MetOpen‘(abs ∘ − )))
4331, 8ffvelrnd 5621 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ℂ)
44 unicntopcntop 13176 . . . . . 6 ℂ = (MetOpen‘(abs ∘ − ))
4544cncnpi 12868 . . . . 5 ((∗ ∈ ((MetOpen‘(abs ∘ − )) Cn (MetOpen‘(abs ∘ − ))) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ℂ) → ∗ ∈ (((MetOpen‘(abs ∘ − )) CnP (MetOpen‘(abs ∘ − )))‘((ℝ D 𝐹)‘𝐶)))
4642, 43, 45sylancr 411 . . . 4 (𝜑 → ∗ ∈ (((MetOpen‘(abs ∘ − )) CnP (MetOpen‘(abs ∘ − )))‘((ℝ D 𝐹)‘𝐶)))
4718, 19, 5, 21, 39, 46limccnpcntop 13284 . . 3 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶))
48 cjf 10789 . . . . . . 7 ∗:ℂ⟶ℂ
4948a1i 9 . . . . . 6 (𝜑 → ∗:ℂ⟶ℂ)
5049, 17cofmpt 5654 . . . . 5 (𝜑 → (∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))))
513adantr 274 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐹:𝑋⟶ℂ)
52 elrabi 2879 . . . . . . . . . . 11 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑥𝑋)
5352adantl 275 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥𝑋)
5451, 53ffvelrnd 5621 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝑥) ∈ ℂ)
553, 16ffvelrnd 5621 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ ℂ)
5655adantr 274 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝐶) ∈ ℂ)
5754, 56subcld 8209 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑥) − (𝐹𝐶)) ∈ ℂ)
584sselda 3142 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑥 ∈ ℝ)
5952, 58sylan2 284 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥 ∈ ℝ)
604, 16sseldd 3143 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
6160adantr 274 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐶 ∈ ℝ)
6259, 61resubcld 8279 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑥𝐶) ∈ ℝ)
6362recnd 7927 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑥𝐶) ∈ ℂ)
6459recnd 7927 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥 ∈ ℂ)
6561recnd 7927 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐶 ∈ ℂ)
66 breq1 3985 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝑤 # 𝐶𝑥 # 𝐶))
6766elrab 2882 . . . . . . . . . . 11 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↔ (𝑥𝑋𝑥 # 𝐶))
6867simprbi 273 . . . . . . . . . 10 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑥 # 𝐶)
6968adantl 275 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥 # 𝐶)
7064, 65, 69subap0d 8542 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑥𝐶) # 0)
7157, 63, 70cjdivapd 10910 . . . . . . 7 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))))
72 cjsub 10834 . . . . . . . . . 10 (((𝐹𝑥) ∈ ℂ ∧ (𝐹𝐶) ∈ ℂ) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
7354, 56, 72syl2anc 409 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
74 fvco3 5557 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑥𝑋) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
753, 52, 74syl2an 287 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
76 fvco3 5557 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝐶𝑋) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
773, 16, 76syl2anc 409 . . . . . . . . . . 11 (𝜑 → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
7877adantr 274 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
7975, 78oveq12d 5860 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
8073, 79eqtr4d 2201 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)))
8162cjred 10913 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘(𝑥𝐶)) = (𝑥𝐶))
8280, 81oveq12d 5860 . . . . . . 7 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
8371, 82eqtrd 2198 . . . . . 6 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
8483mpteq2dva 4072 . . . . 5 (𝜑 → (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
8550, 84eqtrd 2198 . . . 4 (𝜑 → (∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
8685oveq1d 5857 . . 3 (𝜑 → ((∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶) = ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
8747, 86eleqtrd 2245 . 2 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
88 eqid 2165 . . 3 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
89 fco 5353 . . . 4 ((∗:ℂ⟶ℂ ∧ 𝐹:𝑋⟶ℂ) → (∗ ∘ 𝐹):𝑋⟶ℂ)
9048, 3, 89sylancr 411 . . 3 (𝜑 → (∗ ∘ 𝐹):𝑋⟶ℂ)
916, 5, 88, 2, 90, 4eldvap 13291 . 2 (𝜑 → (𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))))
929, 87, 91mpbir2and 934 1 (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  {crab 2448  wss 3116   class class class wbr 3982  cmpt 4043  dom cdm 4604  ran crn 4605  ccom 4608  Fun wfun 5182  wf 5184  cfv 5188  (class class class)co 5842  pm cpm 6615  cc 7751  cr 7752  cmin 8069   # cap 8479   / cdiv 8568  (,)cioo 9824  ccj 10781  abscabs 10939  topGenctg 12571  MetOpencmopn 12625  intcnt 12733   Cn ccn 12825   CnP ccnp 12826  cnccncf 13197   lim climc 13263   D cdv 13264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-pm 6617  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-ioo 9828  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-ntr 12736  df-cn 12828  df-cnp 12829  df-cncf 13198  df-limced 13265  df-dvap 13266
This theorem is referenced by:  dvcj  13313
  Copyright terms: Public domain W3C validator