ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcjbr GIF version

Theorem dvcjbr 15295
Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 15296. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcj.f (𝜑𝐹:𝑋⟶ℂ)
dvcj.x (𝜑𝑋 ⊆ ℝ)
dvcj.c (𝜑𝐶 ∈ dom (ℝ D 𝐹))
Assertion
Ref Expression
dvcjbr (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))

Proof of Theorem dvcjbr
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-resscn 8052 . . . . 5 ℝ ⊆ ℂ
21a1i 9 . . . 4 (𝜑 → ℝ ⊆ ℂ)
3 dvcj.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
4 dvcj.x . . . 4 (𝜑𝑋 ⊆ ℝ)
5 eqid 2207 . . . . 5 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
65tgioo2cntop 15144 . . . 4 (topGen‘ran (,)) = ((MetOpen‘(abs ∘ − )) ↾t ℝ)
72, 3, 4, 6, 5dvbssntrcntop 15271 . . 3 (𝜑 → dom (ℝ D 𝐹) ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
8 dvcj.c . . 3 (𝜑𝐶 ∈ dom (ℝ D 𝐹))
97, 8sseldd 3202 . 2 (𝜑𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋))
104, 1sstrdi 3213 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
111a1i 9 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ℝ ⊆ ℂ)
12 simpl 109 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:𝑋⟶ℂ)
13 simpr 110 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝑋 ⊆ ℝ)
1411, 12, 13dvbss 15272 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D 𝐹) ⊆ 𝑋)
153, 4, 14syl2anc 411 . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) ⊆ 𝑋)
1615, 8sseldd 3202 . . . . . 6 (𝜑𝐶𝑋)
173, 10, 16dvlemap 15267 . . . . 5 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)) ∈ ℂ)
1817fmpttd 5758 . . . 4 (𝜑 → (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))):{𝑤𝑋𝑤 # 𝐶}⟶ℂ)
19 ssidd 3222 . . . 4 (𝜑 → ℂ ⊆ ℂ)
205cntoptopon 15119 . . . . 5 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
2120toponrestid 14608 . . . 4 (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ)
223fdmd 5452 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = 𝑋)
2322feq2d 5433 . . . . . . . . . . . 12 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:𝑋⟶ℂ))
243, 23mpbird 167 . . . . . . . . . . 11 (𝜑𝐹:dom 𝐹⟶ℂ)
2522, 4eqsstrd 3237 . . . . . . . . . . 11 (𝜑 → dom 𝐹 ⊆ ℝ)
26 cnex 8084 . . . . . . . . . . . 12 ℂ ∈ V
27 reex 8094 . . . . . . . . . . . 12 ℝ ∈ V
2826, 27elpm2 6790 . . . . . . . . . . 11 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
2924, 25, 28sylanbrc 417 . . . . . . . . . 10 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
30 dvfpm 15276 . . . . . . . . . 10 (𝐹 ∈ (ℂ ↑pm ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
3129, 30syl 14 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
3231ffund 5449 . . . . . . . 8 (𝜑 → Fun (ℝ D 𝐹))
33 funfvbrb 5716 . . . . . . . 8 (Fun (ℝ D 𝐹) → (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶)))
3432, 33syl 14 . . . . . . 7 (𝜑 → (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶)))
358, 34mpbid 147 . . . . . 6 (𝜑𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶))
36 eqid 2207 . . . . . . 7 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))
376, 5, 36, 2, 3, 4eldvap 15269 . . . . . 6 (𝜑 → (𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))))
3835, 37mpbid 147 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶)))
3938simprd 114 . . . 4 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))
40 cjcncf 15175 . . . . . 6 ∗ ∈ (ℂ–cn→ℂ)
415cncfcn1cntop 15181 . . . . . 6 (ℂ–cn→ℂ) = ((MetOpen‘(abs ∘ − )) Cn (MetOpen‘(abs ∘ − )))
4240, 41eleqtri 2282 . . . . 5 ∗ ∈ ((MetOpen‘(abs ∘ − )) Cn (MetOpen‘(abs ∘ − )))
4331, 8ffvelcdmd 5739 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ℂ)
44 unicntopcntop 15129 . . . . . 6 ℂ = (MetOpen‘(abs ∘ − ))
4544cncnpi 14815 . . . . 5 ((∗ ∈ ((MetOpen‘(abs ∘ − )) Cn (MetOpen‘(abs ∘ − ))) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ℂ) → ∗ ∈ (((MetOpen‘(abs ∘ − )) CnP (MetOpen‘(abs ∘ − )))‘((ℝ D 𝐹)‘𝐶)))
4642, 43, 45sylancr 414 . . . 4 (𝜑 → ∗ ∈ (((MetOpen‘(abs ∘ − )) CnP (MetOpen‘(abs ∘ − )))‘((ℝ D 𝐹)‘𝐶)))
4718, 19, 5, 21, 39, 46limccnpcntop 15262 . . 3 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶))
48 cjf 11273 . . . . . . 7 ∗:ℂ⟶ℂ
4948a1i 9 . . . . . 6 (𝜑 → ∗:ℂ⟶ℂ)
5049, 17cofmpt 5772 . . . . 5 (𝜑 → (∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))))
513adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐹:𝑋⟶ℂ)
52 elrabi 2933 . . . . . . . . . . 11 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑥𝑋)
5352adantl 277 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥𝑋)
5451, 53ffvelcdmd 5739 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝑥) ∈ ℂ)
553, 16ffvelcdmd 5739 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ ℂ)
5655adantr 276 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝐶) ∈ ℂ)
5754, 56subcld 8418 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑥) − (𝐹𝐶)) ∈ ℂ)
584sselda 3201 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑥 ∈ ℝ)
5952, 58sylan2 286 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥 ∈ ℝ)
604, 16sseldd 3202 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
6160adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐶 ∈ ℝ)
6259, 61resubcld 8488 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑥𝐶) ∈ ℝ)
6362recnd 8136 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑥𝐶) ∈ ℂ)
6459recnd 8136 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥 ∈ ℂ)
6561recnd 8136 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐶 ∈ ℂ)
66 breq1 4062 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝑤 # 𝐶𝑥 # 𝐶))
6766elrab 2936 . . . . . . . . . . 11 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↔ (𝑥𝑋𝑥 # 𝐶))
6867simprbi 275 . . . . . . . . . 10 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑥 # 𝐶)
6968adantl 277 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑥 # 𝐶)
7064, 65, 69subap0d 8752 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑥𝐶) # 0)
7157, 63, 70cjdivapd 11394 . . . . . . 7 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))))
72 cjsub 11318 . . . . . . . . . 10 (((𝐹𝑥) ∈ ℂ ∧ (𝐹𝐶) ∈ ℂ) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
7354, 56, 72syl2anc 411 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
74 fvco3 5673 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑥𝑋) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
753, 52, 74syl2an 289 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
76 fvco3 5673 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝐶𝑋) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
773, 16, 76syl2anc 411 . . . . . . . . . . 11 (𝜑 → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
7877adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
7975, 78oveq12d 5985 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
8073, 79eqtr4d 2243 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)))
8162cjred 11397 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘(𝑥𝐶)) = (𝑥𝐶))
8280, 81oveq12d 5985 . . . . . . 7 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
8371, 82eqtrd 2240 . . . . . 6 ((𝜑𝑥 ∈ {𝑤𝑋𝑤 # 𝐶}) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
8483mpteq2dva 4150 . . . . 5 (𝜑 → (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
8550, 84eqtrd 2240 . . . 4 (𝜑 → (∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
8685oveq1d 5982 . . 3 (𝜑 → ((∗ ∘ (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶) = ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
8747, 86eleqtrd 2286 . 2 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
88 eqid 2207 . . 3 (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) = (𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
89 fco 5461 . . . 4 ((∗:ℂ⟶ℂ ∧ 𝐹:𝑋⟶ℂ) → (∗ ∘ 𝐹):𝑋⟶ℂ)
9048, 3, 89sylancr 414 . . 3 (𝜑 → (∗ ∘ 𝐹):𝑋⟶ℂ)
916, 5, 88, 2, 90, 4eldvap 15269 . 2 (𝜑 → (𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))))
929, 87, 91mpbir2and 947 1 (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  {crab 2490  wss 3174   class class class wbr 4059  cmpt 4121  dom cdm 4693  ran crn 4694  ccom 4697  Fun wfun 5284  wf 5286  cfv 5290  (class class class)co 5967  pm cpm 6759  cc 7958  cr 7959  cmin 8278   # cap 8689   / cdiv 8780  (,)cioo 10045  ccj 11265  abscabs 11423  topGenctg 13201  MetOpencmopn 14418  intcnt 14680   Cn ccn 14772   CnP ccnp 14773  cnccncf 15157   lim climc 15241   D cdv 15242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-map 6760  df-pm 6761  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-ioo 10049  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-rest 13188  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-met 14422  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630  df-ntr 14683  df-cn 14775  df-cnp 14776  df-cncf 15158  df-limced 15243  df-dvap 15244
This theorem is referenced by:  dvcj  15296
  Copyright terms: Public domain W3C validator